Suppr超能文献

TF3P:基于深度胶囊网络学习的三维力场指纹。

TF3P: Three-Dimensional Force Fields Fingerprint Learned by Deep Capsular Network.

机构信息

State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P. R. China.

Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100191, P. R. China.

出版信息

J Chem Inf Model. 2020 Jun 22;60(6):2754-2765. doi: 10.1021/acs.jcim.0c00005. Epub 2020 May 28.

Abstract

Molecular fingerprints are the workhorse in ligand-based drug discovery. In recent years, an increasing number of research papers reported fascinating results on using deep neural networks to learn 2D molecular representations as fingerprints. It is anticipated that the integration of deep learning would also contribute to the prosperity of 3D fingerprints. Here, we unprecedentedly introduce deep learning into 3D small molecule fingerprints, presenting a new one we termed as the hree-dimensional orce ields ingerrint (TF3P). TF3P is learned by a deep capsular network whose training is in no need of labeled data sets for specific predictive tasks. TF3P can encode the 3D force fields information of molecules and demonstrates the stronger ability to capture 3D structural changes, to recognize molecules alike in 3D but not in 2D, and to identify similar targets inaccessible by other 2D or 3D fingerprints based on only ligands similarity. Furthermore, TF3P is compatible with both statistical models (e.g., similarity ensemble approach) and machine learning models. Altogether, we report TF3P as a new 3D small molecule fingerprint with a promising future in ligand-based drug discovery. All codes are written in Python and available at https://github.com/canisw/tf3p.

摘要

分子指纹是基于配体的药物发现的主力。近年来,越来越多的研究论文报道了使用深度神经网络学习 2D 分子表示作为指纹的迷人结果。预计深度学习的整合也将促进 3D 指纹的繁荣。在这里,我们史无前例地将深度学习引入 3D 小分子指纹中,提出了一个新的指纹,我们称之为三维力场指纹(TF3P)。TF3P 是由一个深度胶囊网络学习的,其训练不需要特定预测任务的标记数据集。TF3P 可以编码分子的 3D 力场信息,并且表现出更强的能力来捕捉 3D 结构变化,识别三维相似但二维不相似的分子,以及仅基于配体相似性识别其他二维或三维指纹无法识别的相似靶标。此外,TF3P 与统计模型(例如,相似性集成方法)和机器学习模型兼容。总之,我们报告了 TF3P 作为一种新的 3D 小分子指纹,在基于配体的药物发现中有广阔的前景。所有代码均用 Python 编写,并可在 https://github.com/canisw/tf3p 上获得。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验