Suppr超能文献

MOFA+:一种全面整合多模态单细胞数据的统计框架。

MOFA+: a statistical framework for comprehensive integration of multi-modal single-cell data.

机构信息

European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridgeshire, CB10 1SD, UK.

European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.

出版信息

Genome Biol. 2020 May 11;21(1):111. doi: 10.1186/s13059-020-02015-1.

Abstract

Technological advances have enabled the profiling of multiple molecular layers at single-cell resolution, assaying cells from multiple samples or conditions. Consequently, there is a growing need for computational strategies to analyze data from complex experimental designs that include multiple data modalities and multiple groups of samples. We present Multi-Omics Factor Analysis v2 (MOFA+), a statistical framework for the comprehensive and scalable integration of single-cell multi-modal data. MOFA+ reconstructs a low-dimensional representation of the data using computationally efficient variational inference and supports flexible sparsity constraints, allowing to jointly model variation across multiple sample groups and data modalities.

摘要

技术进步使得能够在单细胞分辨率下对多个分子层进行分析,从而对来自多个样本或条件的细胞进行分析。因此,需要计算策略来分析包含多个数据模式和多个样本组的复杂实验设计的数据。我们提出了多组学因子分析 v2(MOFA+),这是一个用于单细胞多模式数据综合和可扩展集成的统计框架。MOFA+ 使用计算效率高的变分推断来重建数据的低维表示,并支持灵活的稀疏性约束,允许联合对多个样本组和数据模式的变化进行建模。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f493/7212577/5393e5485a1f/13059_2020_2015_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验