Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, MD 20892-3706, USA.
Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, MD 20892-3706, USA.
Neuron. 2022 Jun 15;110(12):1899-1923. doi: 10.1016/j.neuron.2022.03.015. Epub 2022 Apr 16.
Mitochondria generate ATP essential for neuronal growth, function, and regeneration. Due to their polarized structures, neurons face exceptional challenges to deliver mitochondria to and maintain energy homeostasis throughout long axons and terminal branches where energy is in high demand. Chronic mitochondrial dysfunction accompanied by bioenergetic failure is a pathological hallmark of major neurodegenerative diseases. Brain injury triggers acute mitochondrial damage and a local energy crisis that accelerates neuron death. Thus, mitochondrial maintenance defects and axonal energy deficits emerge as central problems in neurodegenerative disorders and brain injury. Recent studies have started to uncover the intrinsic mechanisms that neurons adopt to maintain (or reprogram) axonal mitochondrial density and integrity, and their bioenergetic capacity, upon sensing energy stress. In this review, we discuss recent advances in how neurons maintain a healthy pool of axonal mitochondria, as well as potential therapeutic strategies that target bioenergetic restoration to power neuronal survival, function, and regeneration.
线粒体产生 ATP,这对于神经元的生长、功能和再生至关重要。由于神经元的极化结构,它们在向长轴突和末梢分支输送线粒体并维持能量平衡方面面临着特殊的挑战,这些部位能量需求很高。慢性线粒体功能障碍伴随着生物能量衰竭,是主要神经退行性疾病的病理标志。脑损伤会引发急性线粒体损伤和局部能量危机,加速神经元死亡。因此,线粒体维持缺陷和轴突能量不足成为神经退行性疾病和脑损伤的核心问题。最近的研究开始揭示内在机制,即神经元在感知能量应激时,为了维持(或重新编程)轴突线粒体密度和完整性及其生物能量能力,会采用什么机制。在这篇综述中,我们讨论了神经元如何维持健康的轴突线粒体池的最新进展,以及针对生物能量恢复的潜在治疗策略,以维持神经元的存活、功能和再生。