Suppr超能文献

神经元谷氨酸能网络通过沉默但可激活的间隙连接实现电连接。

Neuronal Glutamatergic Network Electrically Wired with Silent But Activatable Gap Junctions.

机构信息

Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 14330 Mexico City, Mexico.

Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Campus UNAM-Juriquilla, Universidad Nacional Autónoma de México, 76230 Querétaro, Mexico.

出版信息

J Neurosci. 2020 Jun 10;40(24):4661-4672. doi: 10.1523/JNEUROSCI.2590-19.2020. Epub 2020 May 11.

Abstract

It is widely assumed that electrical synapses in the mammalian brain, especially between interneurons, underlie neuronal synchrony. In the hippocampus, principal cells also establish electrical synapses with each other and have also been implicated in network oscillations, whereby the origin of fast electrical activity has been attributed to ectopic spikelets and dendro-dendritic or axo-axonal gap junctions. However, if electrical synapses were in axo-dendritic connections, where chemical synapses occur, the synaptic events would be mixed, having an electrical component preceding the chemical one. This type of communication is less well studied, mainly because it is not easily detected. Moreover, a possible scenario could be that an electrical synapse coexisted with a chemical one, but in a nonconductive state; hence, it would be considered inexistent. Could chemical synapses have a quiescent electrical component? If so, can silent electrical synapses be activated to be detected? We addressed this possibility, and we here report that, indeed, the connexin-36-containing glutamatergic mossy fiber synapses of the rat hippocampus express previously unrecognized electrical synapses, which are normally silent. We reveal that these synapses are pH sensitive, actuate and , and that the electrical signaling is bidirectional. With the simultaneous recording of hundreds of cells, we could reveal the existence of an electrical circuit in the hippocampus of adult rats of either sex consisting of principal cells where the nodes are interregional glutamatergic synapses containing silent but ready-to-use gap junctions. In this work, we present a series of experiments, both and , that reveal previously unrecognized silent pH-sensitive electrical synapses coexisting in one of the best studied glutamatergic synapses of the brain, the mossy fiber synapse of the hippocampus. This type of connectivity underlies an "electrical circuit" between two substructures of the adult rat hippocampus consisting of principal cells where the nodes are glutamatergic synapses containing silent but ready-to-use gap junctions. Its identification will allow us to explore the participation of such a circuit in physiological and pathophysiological functions and will provide valuable conceptual tools to understanding computational and regulatory mechanisms that may underlie network activity.

摘要

人们普遍认为,哺乳动物大脑中的电突触,特别是神经元之间的电突触,是神经元同步性的基础。在海马体中,主细胞之间也建立了电突触,并被牵涉到网络振荡中,其中快速电活动的起源归因于异位棘波和树突-树突或轴突-轴突缝隙连接。然而,如果电突触存在于轴突-树突连接中,即化学突触发生的地方,突触事件将是混合的,具有先于化学突触的电成分。这种类型的通信研究得较少,主要是因为它不容易被检测到。此外,一种可能的情况是,电突触与化学突触共存,但处于非传导状态;因此,它将被认为不存在。化学突触是否具有静止的电成分?如果是这样,沉默的电突触是否可以被激活以被检测到?我们解决了这个可能性,并在此报告,实际上,大鼠海马体中的含有连接蛋白 36 的谷氨酸能苔藓纤维突触表达了以前未被识别的电突触,这些电突触通常是沉默的。我们揭示了这些突触对 pH 值敏感,能激活并调节,并且电信号是双向的。通过同时记录数百个细胞,我们可以揭示成年雄性和雌性大鼠海马体中存在一个电回路,该回路由主细胞组成,节点是包含沉默但随时可用的缝隙连接的区域性谷氨酸能突触。在这项工作中,我们进行了一系列实验,包括体内和体外实验,揭示了以前未被识别的沉默的 pH 敏感电突触共存于大脑中研究得最好的谷氨酸能突触之一,即海马体的苔藓纤维突触中。这种连接方式构成了成年大鼠海马体的两个亚结构之间的“电回路”,该亚结构由主细胞组成,节点是包含沉默但随时可用的缝隙连接的谷氨酸能突触。它的鉴定将使我们能够探索这种回路在生理和病理生理功能中的参与,并为理解可能是网络活动基础的计算和调节机制提供有价值的概念工具。

相似文献

3
Gap Junctions in the Brain: Hardwired but Functionally Versatile.脑内缝隙连接:硬连线但功能多样
Neuroscientist. 2023 Oct;29(5):554-568. doi: 10.1177/10738584221120804. Epub 2022 Sep 20.

引用本文的文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验