Suppr超能文献

高维稀疏恢复中的噪声收集器。

The Noise Collector for sparse recovery in high dimensions.

机构信息

Department of Mathematics, Universidad Carlos III de Madrid, Leganes, Madrid 28911, Spain;

Department of Mathematics, Pennsylvania State University, University Park, PA 16802.

出版信息

Proc Natl Acad Sci U S A. 2020 May 26;117(21):11226-11232. doi: 10.1073/pnas.1913995117. Epub 2020 May 11.

Abstract

The ability to detect sparse signals from noisy, high-dimensional data is a top priority in modern science and engineering. It is well known that a sparse solution of the linear system [Formula: see text] can be found efficiently with an [Formula: see text]-norm minimization approach if the data are noiseless. However, detection of the signal from data corrupted by noise is still a challenging problem as the solution depends, in general, on a regularization parameter with optimal value that is not easy to choose. We propose an efficient approach that does not require any parameter estimation. We introduce a no-phantom weight τ and the Noise Collector matrix C and solve an augmented system [Formula: see text], where e is the noise. We show that the [Formula: see text]-norm minimal solution of this system has zero false discovery rate for any level of noise, with probability that tends to one as the dimension of [Formula: see text] increases to infinity. We obtain exact support recovery if the noise is not too large and develop a fast Noise Collector algorithm, which makes the computational cost of solving the augmented system comparable with that of the original one. We demonstrate the effectiveness of the method in applications to passive array imaging.

摘要

从噪声高维数据中检测稀疏信号是现代科学和工程的首要任务。众所周知,如果数据无噪声,则可以通过[Formula: see text]-范数最小化方法有效地找到线性系统[Formula: see text]的稀疏解。然而,从受噪声污染的数据中检测信号仍然是一个具有挑战性的问题,因为解决方案通常取决于正则化参数,而最优值不容易选择。我们提出了一种不需要任何参数估计的有效方法。我们引入了一个无伪影权重τ和噪声收集器矩阵 C,并解决了一个增广系统[Formula: see text],其中 e 是噪声。我们证明,对于任何噪声水平,该系统的[Formula: see text]-范数最小解具有零虚警率,随着[Formula: see text]的维度增加到无穷大,概率趋于 1。如果噪声不是太大,则可以获得确切的支持恢复,并开发了一种快速的噪声收集器算法,这使得求解增广系统的计算成本与原始系统的计算成本相当。我们在被动阵列成像中的应用中证明了该方法的有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验