Celik Erdogan, Negi Rajendra S, Bastianello Michele, Boll Dominic, Mazilkin Andrey, Brezesinski Torsten, Elm Matthias T
Center for Materials Research, Justus-Liebig-University Giessen, Heinrich-Buff Ring 16, 35392 Giessen, Germany.
Phys Chem Chem Phys. 2020 May 28;22(20):11519-11528. doi: 10.1039/d0cp01619e. Epub 2020 May 12.
Porous yttria-stabilized zirconia (YSZ) thin films were prepared by pulsed laser deposition to investigate the influence of specific surface area on the electronic, oxygen ion, and protonic transport properties. Electrochemical impedance spectroscopy was carried out as a function of temperature, oxygen activity and humidity of the surrounding atmosphere. At high humidity, protons on the surface of the porous YSZ thin films lead to increased conductivity, even for temperatures up to 700 °C. With increasing relative humidity, the activation energy of proton transport decreases because of changes in the transport mechanism from Grotthuss-type to vehicle-type transport. By coating the porous YSZ films with an amorphous titania (TiO) layer of only a few nanometer thickness using atomic layer deposition, the protonic contribution to conductivity is significantly reduced. Depositing an 18 nm-thick anatase TiO surface layer, the protonic conductivity contribution increases again, which can be attributed to enhanced capillary condensation because of the lower pore size. Interestingly, the filling of pores is accompanied by a decrease in proton mobility. Theses results demonstrate the significant effect that the porosity and the surface properties have on the protonic transport and further provide new design principles for developing nanostructured proton-conducting oxides.
通过脉冲激光沉积制备了多孔氧化钇稳定氧化锆(YSZ)薄膜,以研究比表面积对电子、氧离子和质子传输性能的影响。作为温度、氧活性和周围大气湿度的函数进行了电化学阻抗谱分析。在高湿度下,即使在高达700℃的温度下,多孔YSZ薄膜表面的质子也会导致电导率增加。随着相对湿度的增加,由于传输机制从Grotthuss型转变为载体型传输,质子传输的活化能降低。通过使用原子层沉积法在多孔YSZ薄膜上涂覆仅几纳米厚的非晶二氧化钛(TiO)层,质子对电导率的贡献显著降低。沉积18nm厚的锐钛矿TiO表面层后,质子电导率贡献再次增加,这可归因于由于孔径较小而增强的毛细凝聚。有趣的是,孔隙填充伴随着质子迁移率的降低。这些结果证明了孔隙率和表面性质对质子传输的显著影响,并进一步为开发纳米结构质子导电氧化物提供了新的设计原则。