Venom Evolution Lab, University of Queensland, School of Biological Sciences, Brisbane, Queensland, 4072, Australia.
QIMR Berghofer, Royal Brisbane Hospital, Brisbane, QLD, 4029, Australia.
Neurotox Res. 2020 Aug;38(2):312-318. doi: 10.1007/s12640-020-00211-2. Epub 2020 May 11.
Ecological variability among closely related species provides an opportunity for evolutionary comparative studies. Therefore, to investigate the origin and evolution of neurotoxicity in Asian viperid snakes, we tested the venoms of Azemiops feae, Calloselasma rhodostoma, Deinagkistrodon acutus, Tropidolaeums subannulatus, and T. wagleri for their relative specificity and potency upon the amphibian, lizard, bird, rodent, and human α-1 (neuromuscular) nicotinic acetylcholine receptors. We utilised a biolayer interferometry assay to test the binding affinity of these pit viper venoms to orthosteric mimotopes of nicotinic acetylcholine receptors binding region from a diversity of potential prey types. The Tropidolaemus venoms were much more potent than the other species tested, which is consistent with the greater prey escape potential in arboreal niches. Intriguingly, the venom of C. rhodostoma showed neurotoxic binding to the α-1 mimotopes, a feature not known previously for this species. The lack of prior knowledge of neurotoxicity in this species is consistent with our results due to the bias in rodent studies and human bite reports, whilst this venom had a greater binding affinity toward amphibian and diapsid α-1 targets. The other large terrestrial species, D. acutus, did not display any meaningful levels of neurotoxicity. These results demonstrate that whilst small peptide neurotoxins are a basal trait of these snakes, it has been independently amplified on two separate occasions, once in Azemiops and again in Tropidolaemus, and with Calloselasma representing a third possible amplification of this trait. These results also point to broader sources of novel neuroactive peptides with the potential for use as lead compounds in drug design and discovery.
种间生态变异为进化比较研究提供了机会。因此,为了研究亚洲蝮蛇神经毒性的起源和进化,我们测试了圆斑蝰、尖吻蝮、短尾蝮、竹叶青和烙铁头的毒液对两栖动物、蜥蜴、鸟类、啮齿动物和人类α-1(神经肌肉)烟碱型乙酰胆碱受体的相对特异性和效力。我们利用生物层干涉测量法来测试这些蝮蛇毒液与来自多种潜在猎物类型的烟碱型乙酰胆碱受体结合区的变构模拟物的结合亲和力。与其他测试的物种相比,竹叶青的毒液更有效,这与在树栖生态位中更大的猎物逃避潜力一致。有趣的是,尖吻蝮的毒液对α-1模拟物表现出神经毒性结合,这是以前未知的该物种的特征。由于啮齿动物研究和人类咬伤报告的偏见,该物种缺乏先前已知的神经毒性,这与我们的结果一致,而这种毒液对两栖动物和双孔目α-1 靶标具有更大的结合亲和力。其他大型陆生物种,短尾蝮,没有表现出任何有意义的神经毒性水平。这些结果表明,虽然小肽神经毒素是这些蛇的基本特征,但它已经在两个独立的场合被独立放大,一次是在圆斑蝰,另一次是在竹叶青,而尖吻蝮代表了这种特征的第三次可能放大。这些结果还表明,有更广泛的新型神经活性肽来源,有可能作为药物设计和发现的先导化合物。