Grinderslev Jakob B, Ley Morten B, Lee Young-Su, Jepsen Lars H, Jørgensen Mathias, Cho Young Whan, Skibsted Jørgen, Jensen Torben R
Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, University of Aarhus, Langelandsgade 140, DK-8000 Aarhus C, Denmark.
Center for Energy Materials Research, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.
Inorg Chem. 2020 Jun 1;59(11):7768-7778. doi: 10.1021/acs.inorgchem.0c00817. Epub 2020 May 12.
Ammine metal borohydrides show potential for solid-state hydrogen storage and can be tailored toward hydrogen release at low temperatures. Here, we report the synthesis and structural characterization of seven new ammine metal borohydrides, (BH)·NH, M = La ( = 6, 4, or 3) or Ce ( = 6, 5, 4, or 3). The two compounds with = 6 are isostructural and have new orthorhombic structure types (space group 222) built from cationic complexes, [(NH)(BH)], and are charge balanced by BH. The structure of Ce(BH)·5NH is orthorhombic (space group 222) and is built from cationic complexes, [Ce(NH)(BH)], and charge balanced by BH. These are rare examples of borohydride complexes acting both as a ligand and as a counterion in the same compound. The structures of (BH)·4NH are monoclinic (space group ), built from neutral molecular complexes of [(NH)(BH)]. The new compositions, (BH)·3NH (M = La, Ce), among ammine metal borohydrides, are orthorhombic (space group 2), containing molecular complexes of [(NH)(BH)]. A revised structural model for (BH)·5NH ( = Y, Gd, Dy) is presented, and the previously reported composition (BH)·4NH ( = Y, La, Gd, Dy) is proposed in fact to be (BH)·3NH along with a new structural model. The temperature-dependent structural properties and decomposition are investigated by synchrotron radiation powder X-ray diffraction in vacuum and argon atmosphere and by thermal analysis combined with mass spectrometry. The compounds with = 6, 5, and 4 mainly release ammonia at low temperatures, while hydrogen evolution occurs for (BH)·3NH (M = La, Ce). Gas-release temperatures and gas composition from these compounds depend on the physical conditions and on the relative stability of (BH)·NH and (BH).
氨基金属硼氢化物在固态储氢方面具有潜力,并且可以针对低温下的氢释放进行定制。在此,我们报告了七种新型氨基金属硼氢化物(BH)·NH(M = La(= 6、4或3)或Ce(= 6、5、4或3))的合成及结构表征。两种 = 6的化合物是同构的,具有由阳离子配合物[(NH)(BH)]构建的新正交结构类型(空间群222),并由BH进行电荷平衡。Ce(BH)·5NH的结构为正交晶系(空间群222),由阳离子配合物[Ce(NH)(BH)]构建,并由BH进行电荷平衡。这些是硼氢化物配合物在同一化合物中既作为配体又作为抗衡离子的罕见例子。(BH)·4NH的结构为单斜晶系(空间群 ),由[(NH)(BH)]的中性分子配合物构建。氨基金属硼氢化物中的新组成(BH)·3NH(M = La,Ce)为正交晶系(空间群2),包含[(NH)(BH)]的分子配合物。提出了(BH)·5NH( = Y、Gd、Dy)的修正结构模型,并且事实上先前报道的组成(BH)·4NH( = Y、La、Gd、Dy)被认为是(BH)·3NH,并伴有新的结构模型。通过在真空和氩气气氛中进行同步辐射粉末X射线衍射以及结合质谱的热分析,研究了温度依赖的结构性质和分解情况。 = 6、5和4的化合物主要在低温下释放氨,而(BH)·3NH(M = La,Ce)则发生析氢。这些化合物的气体释放温度和气体组成取决于物理条件以及(BH)·NH和(BH)的相对稳定性。