Department of Chemistry, Columbia University, New York, New York 10027, United States.
Department of Psychiatry, Columbia University Irving Medical Center, New York, New York 10027, United States.
J Am Chem Soc. 2020 May 20;142(20):9285-9301. doi: 10.1021/jacs.0c00861. Epub 2020 May 12.
Voltage sensitive fluorescent dyes (VSDs) are important tools for probing signal transduction in neurons and other excitable cells. The impact of these highly lipophilic sensors has, however, been limited due to the lack of cell-specific targeting methods in brain tissue or living animals. We address this key challenge by introducing a nongenetic molecular platform for cell- and molecule-specific targeting of synthetic VSDs in the brain. We employ a dextran polymer particle to overcome the inherent lipophilicity of VSDs by dynamic encapsulation and high-affinity ligands to target the construct to specific neuronal cells utilizing only native components of the neurotransmission machinery at physiological expression levels. Dichloropane, a monoamine transporter ligand, enables targeting of dense dopaminergic axons in the mouse striatum and sparse noradrenergic axons in the mouse cortex in acute brain slices. PFQX in conjunction with ligand-directed acyl imidazole chemistry enables covalent labeling of AMPA-type glutamate receptors in the same brain regions. Probe variants bearing either a classical electrochromic ANEP dye or state-of-the-art VoltageFluor-type dye respond to membrane potential changes in a similar manner to the parent dyes, as shown by whole-cell patch recording. We demonstrate the feasibility of optical voltage recording with our probes in brain tissue with one-photon and two-photon fluorescence microscopy and define the signal limits of optical voltage imaging with synthetic sensors under a low photon budget determined by the native expression levels of the target proteins. This work demonstrates the feasibility of a chemical targeting approach and expands the possibilities of cell-specific imaging and pharmacology.
电压敏感荧光染料(VSD)是研究神经元和其他可兴奋细胞信号转导的重要工具。然而,由于缺乏针对脑组织或活体动物的细胞特异性靶向方法,这些高度亲脂性传感器的应用受到了限制。我们通过引入一种非遗传的分子平台来解决这一关键挑战,该平台可用于在大脑中对合成 VSD 进行细胞和分子特异性靶向。我们使用葡聚糖聚合物颗粒通过动态包封和高亲和力配体来克服 VSD 的固有亲脂性,利用仅在生理表达水平下利用神经递质传递机制的天然成分将构建体靶向特定的神经元细胞。二氯丙烷是一种单胺转运体配体,可靶向小鼠纹状体中的密集多巴胺能轴突和小鼠皮层中的稀疏去甲肾上腺素能轴突。PFQX 与配体导向酰亚胺化学相结合,可使 AMPA 型谷氨酸受体在相同的脑区发生共价标记。带有经典电致变色 ANEP 染料或最先进的 VoltageFluor 型染料的探针变体以与亲本染料相似的方式响应膜电位变化,如全细胞贴附记录所示。我们通过单光子和双光子荧光显微镜证明了我们的探针在脑组织中进行光学电压记录的可行性,并根据目标蛋白的天然表达水平确定的低光子预算,定义了使用合成传感器进行光学电压成像的信号限制。这项工作证明了化学靶向方法的可行性,并扩展了细胞特异性成像和药理学的可能性。