Suppr超能文献

亚分辨率目标的多变量成像中的固有权衡。

Intrinsic Tradeoffs in Multi-Covariate Imaging of Sub-Resolution Targets.

出版信息

IEEE Trans Ultrason Ferroelectr Freq Control. 2020 Oct;67(10):1980-1992. doi: 10.1109/TUFFC.2020.2993241. Epub 2020 May 8.

Abstract

Multi-covariate Imaging of Sub-resolution Targets (MIST) is an estimation-based method of imaging the statistics of diffuse scattering targets. MIST estimates the contributions of a set of covariance models to the echo data covariance matrix. Models are defined based on a spatial decomposition of the theoretical transmit intensity distribution into ON-axis and OFF-axis contributions, delineated by a user-specified spatial cutoff. We define this cutoff as the region of interest width (ROI width). In our previous work, we selected the ROI width as the first zero crossing separating the mainlobe from the sidelobe regions. This article explores the effects of varying two key parameters on MIST image quality: 1) ROI width and 2) the degree of spatial averaging of the measured echo data covariance matrix. These results demonstrate a fundamental tradeoff between resolution and speckle texture. We characterize MIST imaging performance across these tunable parameters in a number of simulated, phantom, and in vivo liver applications. We consider performance in noise, fidelity to native contrast, resolution, and speckle texture. MIST is also compared with varying levels of spatial and frequency compounding, demonstrating quantitative improvements in image quality at comparable levels of speckle reduction. In an in vivo example, optimized MIST images demonstrated 20.2% and 13.4% improvements in contrast-to-noise ratio over optimized spatial and frequency compounding images, respectively. These results present a framework for selecting MIST parameters to maximize speckle signal-to-noise ratio without an appreciable loss in resolution.

摘要

多变量亚分辨目标成像(MIST)是一种基于估计的扩散散射目标统计成像方法。MIST 估计一组协方差模型对回波数据协方差矩阵的贡献。模型基于理论发射强度分布的空间分解定义为轴向和离轴贡献,由用户指定的空间截止值来区分。我们将这个截止值定义为感兴趣区宽度(ROI 宽度)。在我们之前的工作中,我们选择 ROI 宽度作为分离主瓣和旁瓣区域的第一个零点交叉。本文探讨了两种关键参数对 MIST 图像质量的影响:1)ROI 宽度和 2)测量回波数据协方差矩阵的空间平均程度。这些结果展示了分辨率和散斑纹理之间的基本权衡。我们在多个模拟、体模和体内肝脏应用中对这些可调参数下的 MIST 成像性能进行了描述。我们考虑了噪声、对固有对比度的保真度、分辨率和散斑纹理的性能。MIST 还与不同程度的空间和频率复合进行了比较,显示了在可比的散斑减少水平下图像质量的定量提高。在一个体内示例中,优化后的 MIST 图像在对比度噪声比方面分别比优化后的空间和频率复合图像提高了 20.2%和 13.4%。这些结果为选择 MIST 参数提供了一个框架,以便在不明显损失分辨率的情况下最大化散斑信噪比。

相似文献

1
Intrinsic Tradeoffs in Multi-Covariate Imaging of Sub-Resolution Targets.亚分辨率目标的多变量成像中的固有权衡。
IEEE Trans Ultrason Ferroelectr Freq Control. 2020 Oct;67(10):1980-1992. doi: 10.1109/TUFFC.2020.2993241. Epub 2020 May 8.
2
Synthetic Aperture Focusing for Multi-Covariate Imaging of Sub-Resolution Targets.多变量亚分辨率目标的合成孔径聚焦成像。
IEEE Trans Ultrason Ferroelectr Freq Control. 2020 Jun;67(6):1166-1177. doi: 10.1109/TUFFC.2020.2966116. Epub 2020 Jan 13.
3
Multi-covariate Imaging of Sub-resolution Targets.亚分辨率目标的多变量成像。
IEEE Trans Med Imaging. 2019 Jul;38(7):1690-1700. doi: 10.1109/TMI.2019.2917021. Epub 2019 May 15.
4
Adaptive Models for Multi-Covariate Imaging of Sub-Resolution Targets (MIST).多变量亚分辨率目标成像(MIST)的自适应模型。
IEEE Trans Ultrason Ferroelectr Freq Control. 2022 Jul;69(7):2303-2317. doi: 10.1109/TUFFC.2022.3178035. Epub 2022 Jun 30.
6
Resolution and Speckle Reduction in Cardiac Imaging.心脏成像中的分辨率和散斑减少。
IEEE Trans Ultrason Ferroelectr Freq Control. 2021 Apr;68(4):1131-1143. doi: 10.1109/TUFFC.2020.3034518. Epub 2021 Mar 26.
7
Beamforming and Speckle Reduction Using Neural Networks.基于神经网络的波束形成和散斑抑制。
IEEE Trans Ultrason Ferroelectr Freq Control. 2019 May;66(5):898-910. doi: 10.1109/TUFFC.2019.2903795. Epub 2019 Mar 8.
8
Compounding in synthetic aperture imaging.合成孔径成像中的复合处理。
IEEE Trans Ultrason Ferroelectr Freq Control. 2012 Sep;59(9):2054-65. doi: 10.1109/TUFFC.2012.2427.
9
Strain compounding: spatial resolution and performance on human images.
Ultrasound Med Biol. 2001 Nov;27(11):1535-41. doi: 10.1016/s0301-5629(01)00459-8.

引用本文的文献

2
Adaptive Models for Multi-Covariate Imaging of Sub-Resolution Targets (MIST).多变量亚分辨率目标成像(MIST)的自适应模型。
IEEE Trans Ultrason Ferroelectr Freq Control. 2022 Jul;69(7):2303-2317. doi: 10.1109/TUFFC.2022.3178035. Epub 2022 Jun 30.
3
Advances in ultrasonography: image formation and quality assessment.超声成像技术的进展:图像形成与质量评估。
J Med Ultrason (2001). 2021 Oct;48(4):377-389. doi: 10.1007/s10396-021-01140-z. Epub 2021 Oct 20.

本文引用的文献

1
Synthetic Aperture Focusing for Multi-Covariate Imaging of Sub-Resolution Targets.多变量亚分辨率目标的合成孔径聚焦成像。
IEEE Trans Ultrason Ferroelectr Freq Control. 2020 Jun;67(6):1166-1177. doi: 10.1109/TUFFC.2020.2966116. Epub 2020 Jan 13.
2
The Generalized Contrast-to-Noise Ratio: A Formal Definition for Lesion Detectability.广义对比噪声比:一种用于检测病变的正式定义。
IEEE Trans Ultrason Ferroelectr Freq Control. 2020 Apr;67(4):745-759. doi: 10.1109/TUFFC.2019.2956855. Epub 2019 Nov 29.
4
Multi-covariate Imaging of Sub-resolution Targets.亚分辨率目标的多变量成像。
IEEE Trans Med Imaging. 2019 Jul;38(7):1690-1700. doi: 10.1109/TMI.2019.2917021. Epub 2019 May 15.
5
The Effect of Dynamic Range Alterations in the Estimation of Contrast.对比度估计中动态范围改变的影响。
IEEE Trans Ultrason Ferroelectr Freq Control. 2019 Jul;66(7):1198-1208. doi: 10.1109/TUFFC.2019.2911267. Epub 2019 Apr 15.
6
Beamforming and Speckle Reduction Using Neural Networks.基于神经网络的波束形成和散斑抑制。
IEEE Trans Ultrason Ferroelectr Freq Control. 2019 May;66(5):898-910. doi: 10.1109/TUFFC.2019.2903795. Epub 2019 Mar 8.
7
Lag-One Coherence as a Metric for Ultrasonic Image Quality.滞后一致作为超声图像质量的度量标准。
IEEE Trans Ultrason Ferroelectr Freq Control. 2018 Oct;65(10):1768-1780. doi: 10.1109/TUFFC.2018.2855653. Epub 2018 Jul 12.
9
Medical ultrasound systems.医用超声系统。
Interface Focus. 2011 Aug 6;1(4):477-89. doi: 10.1098/rsfs.2011.0027. Epub 2011 May 18.
10
Short-lag spatial coherence of backscattered echoes: imaging characteristics.背散射回波的短时滞空间相干性:成像特征。
IEEE Trans Ultrason Ferroelectr Freq Control. 2011 Jul;58(7):1377-88. doi: 10.1109/TUFFC.2011.1957.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验