IEEE Trans Ultrason Ferroelectr Freq Control. 2020 Oct;67(10):1980-1992. doi: 10.1109/TUFFC.2020.2993241. Epub 2020 May 8.
Multi-covariate Imaging of Sub-resolution Targets (MIST) is an estimation-based method of imaging the statistics of diffuse scattering targets. MIST estimates the contributions of a set of covariance models to the echo data covariance matrix. Models are defined based on a spatial decomposition of the theoretical transmit intensity distribution into ON-axis and OFF-axis contributions, delineated by a user-specified spatial cutoff. We define this cutoff as the region of interest width (ROI width). In our previous work, we selected the ROI width as the first zero crossing separating the mainlobe from the sidelobe regions. This article explores the effects of varying two key parameters on MIST image quality: 1) ROI width and 2) the degree of spatial averaging of the measured echo data covariance matrix. These results demonstrate a fundamental tradeoff between resolution and speckle texture. We characterize MIST imaging performance across these tunable parameters in a number of simulated, phantom, and in vivo liver applications. We consider performance in noise, fidelity to native contrast, resolution, and speckle texture. MIST is also compared with varying levels of spatial and frequency compounding, demonstrating quantitative improvements in image quality at comparable levels of speckle reduction. In an in vivo example, optimized MIST images demonstrated 20.2% and 13.4% improvements in contrast-to-noise ratio over optimized spatial and frequency compounding images, respectively. These results present a framework for selecting MIST parameters to maximize speckle signal-to-noise ratio without an appreciable loss in resolution.
多变量亚分辨目标成像(MIST)是一种基于估计的扩散散射目标统计成像方法。MIST 估计一组协方差模型对回波数据协方差矩阵的贡献。模型基于理论发射强度分布的空间分解定义为轴向和离轴贡献,由用户指定的空间截止值来区分。我们将这个截止值定义为感兴趣区宽度(ROI 宽度)。在我们之前的工作中,我们选择 ROI 宽度作为分离主瓣和旁瓣区域的第一个零点交叉。本文探讨了两种关键参数对 MIST 图像质量的影响:1)ROI 宽度和 2)测量回波数据协方差矩阵的空间平均程度。这些结果展示了分辨率和散斑纹理之间的基本权衡。我们在多个模拟、体模和体内肝脏应用中对这些可调参数下的 MIST 成像性能进行了描述。我们考虑了噪声、对固有对比度的保真度、分辨率和散斑纹理的性能。MIST 还与不同程度的空间和频率复合进行了比较,显示了在可比的散斑减少水平下图像质量的定量提高。在一个体内示例中,优化后的 MIST 图像在对比度噪声比方面分别比优化后的空间和频率复合图像提高了 20.2%和 13.4%。这些结果为选择 MIST 参数提供了一个框架,以便在不明显损失分辨率的情况下最大化散斑信噪比。