Suppr超能文献

基于谐振腔的压电微机械超声换能器的单元及阵列等效电路模型

Equivalent Circuit Models of Cell and Array for Resonant Cavity-Based Piezoelectric Micromachined Ultrasonic Transducer.

作者信息

Xu Tingzhong, Zhao Libo, Jiang Zhuangde, Guo Shuaishuai, Li Zhikang, Yang Ping, Luo Guoxi, Sun Lin, Zhang Liangchi

出版信息

IEEE Trans Ultrason Ferroelectr Freq Control. 2020 Oct;67(10):2103-2118. doi: 10.1109/TUFFC.2020.2993805. Epub 2020 May 11.

Abstract

This article presents a design of resonant cavity-based piezoelectric micromachined ultrasonic transducers (PMUTs), including impedance matching tube-integrated (T) and Helmholtz resonant (HR) cavity-integrated PMUTs. In addition, equivalent circuit models for single PMUT cell and PMUT array are developed for structural optimization and complex array design. The model-derived results agree well with the FEM results. On the basis of the proposed models, an optimized design is established to achieve high output pressure and a good array working performance. The working performance of arrays that consist of HR-PMUTs and traditional circular diaphragm PMUTs (C-PMUTs) is compared. Results indicate that the HR-PMUT array has a lower crosstalk effect than the traditional C-PMUT array. Furthermore, the highest ultrasonic output pressure of HR-PMUT array at the resonant frequency can be achieved with an increase of up to 163% compared with that of the C-PMUT array because of the liquid amplification effect. Also, the cavity-based design and its model can be used for further advanced PMUT cell structures in other arrays to improve their performance.

摘要

本文介绍了一种基于谐振腔的压电微机电超声换能器(PMUT)的设计,包括集成阻抗匹配管(T)和亥姆霍兹谐振(HR)腔的PMUT。此外,还开发了单个PMUT单元和PMUT阵列的等效电路模型,用于结构优化和复杂阵列设计。模型推导结果与有限元法结果吻合良好。基于所提出的模型,建立了一种优化设计,以实现高输出压力和良好的阵列工作性能。比较了由HR-PMUT和传统圆形膜片PMUT(C-PMUT)组成的阵列的工作性能。结果表明,HR-PMUT阵列的串扰效应低于传统C-PMUT阵列。此外,由于液体放大效应,HR-PMUT阵列在谐振频率下的最高超声输出压力与C-PMUT阵列相比可提高多达163%。而且,基于腔的设计及其模型可用于其他阵列中进一步先进的PMUT单元结构,以提高其性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验