文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

MRGCN:基于全和部分多组学数据集的多重建图卷积网络进行癌症亚型分类。

MRGCN: cancer subtyping with multi-reconstruction graph convolutional network using full and partial multi-omics dataset.

机构信息

The Shaanxi Key Laboratory of Clothing Intelligence, School of Computer Science, Xi'an Polytechnic University, Xi'an 710048, China.

Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada.

出版信息

Bioinformatics. 2023 Jun 1;39(6). doi: 10.1093/bioinformatics/btad353.


DOI:10.1093/bioinformatics/btad353
PMID:37255323
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10279523/
Abstract

MOTIVATION: Cancer is a molecular complex and heterogeneous disease. Each type of cancer is usually composed of several subtypes with different treatment responses and clinical outcomes. Therefore, subtyping is a crucial step in cancer diagnosis and therapy. The rapid advances in high-throughput sequencing technologies provide an increasing amount of multi-omics data, which benefits our understanding of cancer genetic architecture, and yet poses new challenges in multi-omics data integration. RESULTS: We propose a graph convolutional network model, called MRGCN for multi-omics data integrative representation. MRGCN simultaneously encodes and reconstructs multiple omics expression and similarity relationships into a shared latent embedding space. In addition, MRGCN adopts an indicator matrix to denote the situation of missing values in partial omics, so that the full and partial multi-omics processing procedures are combined in a unified framework. Experimental results on 11 multi-omics datasets show that cancer subtypes obtained by MRGCN with superior enriched clinical parameters and log-rank test P-values in survival analysis over many typical integrative methods. AVAILABILITY AND IMPLEMENTATION: https://github.com/Polytech-bioinf/MRGCN.git https://figshare.com/articles/software/MRGCN/23058503.

摘要

动机:癌症是一种分子复杂且异质的疾病。每种类型的癌症通常由几种具有不同治疗反应和临床结局的亚型组成。因此,亚型分析是癌症诊断和治疗的关键步骤。高通量测序技术的快速发展提供了越来越多的多组学数据,这有助于我们理解癌症的遗传结构,但也给多组学数据的整合带来了新的挑战。

结果:我们提出了一种图卷积网络模型,称为 MRGCN,用于多组学数据的综合表示。MRGCN 同时将多个组学表达和相似性关系编码并重构为共享的潜在嵌入空间。此外,MRGCN 采用指示矩阵来表示部分组学中缺失值的情况,从而将完整和部分多组学处理过程结合在一个统一的框架中。在 11 个多组学数据集上的实验结果表明,MRGCN 获得的癌症亚型在生存分析中具有优越的丰富临床参数和对数秩检验 P 值,优于许多典型的整合方法。

可用性和实现:https://github.com/Polytech-bioinf/MRGCN.git https://figshare.com/articles/software/MRGCN/23058503。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/66a2/10279523/694986ac24d3/btad353f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/66a2/10279523/21f328f9dfb6/btad353f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/66a2/10279523/603c28b23c10/btad353f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/66a2/10279523/694986ac24d3/btad353f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/66a2/10279523/21f328f9dfb6/btad353f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/66a2/10279523/603c28b23c10/btad353f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/66a2/10279523/694986ac24d3/btad353f3.jpg

相似文献

[1]
MRGCN: cancer subtyping with multi-reconstruction graph convolutional network using full and partial multi-omics dataset.

Bioinformatics. 2023-6-1

[2]
Deep structure integrative representation of multi-omics data for cancer subtyping.

Bioinformatics. 2022-6-27

[3]
A network embedding based method for partial multi-omics integration in cancer subtyping.

Methods. 2021-8

[4]
Multi-omics clustering for cancer subtyping based on latent subspace learning.

Comput Biol Med. 2023-9

[5]
Subtype-MGTP: a cancer subtype identification framework based on multi-omics translation.

Bioinformatics. 2024-6-3

[6]
Integration of multi-omics data using adaptive graph learning and attention mechanism for patient classification and biomarker identification.

Comput Biol Med. 2023-9

[7]
Autoencoder-assisted latent representation learning for survival prediction and multi-view clustering on multi-omics cancer subtyping.

Math Biosci Eng. 2023-11-27

[8]
A semi-supervised approach for the integration of multi-omics data based on transformer multi-head self-attention mechanism and graph convolutional networks.

BMC Genomics. 2024-1-22

[9]
FGCNSurv: dually fused graph convolutional network for multi-omics survival prediction.

Bioinformatics. 2023-8-1

[10]
Cancer subtype identification by consensus guided graph autoencoders.

Bioinformatics. 2021-12-11

引用本文的文献

[1]
DeepMoIC: multi-omics data integration via deep graph convolutional networks for cancer subtype classification.

BMC Genomics. 2024-12-18

[2]
IPFMC: an iterative pathway fusion approach for enhanced multi-omics clustering in cancer research.

Brief Bioinform. 2024-9-23

[3]
Deeply integrating latent consistent representations in high-noise multi-omics data for cancer subtyping.

Brief Bioinform. 2024-1-22

[4]
Exploring the Application of the Artificial-Intelligence-Integrated Platform 3D Slicer in Medical Imaging Education.

Diagnostics (Basel). 2024-1-8

[5]
Multi-omics integration with weighted affinity and self-diffusion applied for cancer subtypes identification.

J Transl Med. 2024-1-19

本文引用的文献

[1]
Insights into breast cancer phenotying through molecular omics approaches and therapy response.

Cancer Drug Resist. 2019-9-19

[2]
MoGCN: A Multi-Omics Integration Method Based on Graph Convolutional Network for Cancer Subtype Analysis.

Front Genet. 2022-2-2

[3]
Understanding and overcoming tumor heterogeneity in metastatic breast cancer treatment.

Nat Cancer. 2021-7

[4]
Evaluation and comparison of multi-omics data integration methods for cancer subtyping.

PLoS Comput Biol. 2021-8

[5]
Multi-view spectral clustering via common structure maximization of local and global representations.

Neural Netw. 2021-11

[6]
A network embedding based method for partial multi-omics integration in cancer subtyping.

Methods. 2021-8

[7]
Generalized Incomplete Multiview Clustering With Flexible Locality Structure Diffusion.

IEEE Trans Cybern. 2021-1

[8]
Multi-omics Data Integration, Interpretation, and Its Application.

Bioinform Biol Insights. 2020-1-31

[9]
NEMO: cancer subtyping by integration of partial multi-omic data.

Bioinformatics. 2019-9-15

[10]
Multi-omic and multi-view clustering algorithms: review and cancer benchmark.

Nucleic Acids Res. 2018-11-16

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索