Laurenti Marco, Garino Nadia, Canavese Giancarlo, Hernandéz Simelys, Cauda Valentina
Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Turin, Italy.
Center for Sustainable Future Technologies @Polito, Istituto Italiano di Tecnologia, Via Livorno, 60, 10144 Turin, Italy.
ACS Appl Mater Interfaces. 2020 Jun 10;12(23):25798-25808. doi: 10.1021/acsami.0c03787. Epub 2020 May 28.
The discovery of novel catalytic materials showing unprecedented properties and improved functionalities represents a major challenge to design advanced oxidation processes for wastewater purification. In this work, antimony (Sb) doping is proposed as a powerful approach for enhancing the photo- and piezocatalytic performances of piezoelectric zinc oxide (ZnO) thin films. To investigate the role played by the dopant, the degradation of Rhodamine-β (Rh-β), a dye pollutant widely present in natural water sources, is studied when the catalyst is irradiated by ultraviolet (UV) light or ultrasound (US) waves. Depending on the doping level, the structural, optical, and ferroelectric properties of the catalyst can be properly set to maximize the dye degradation efficiency. Independently of the irradiation source, the fastest and complete dye degradation is observed in the presence of the doped catalyst and for an optimal amount of the inserted dopant. Among ZnO:Sb samples, the most doped one (5 at. %) shows improved UV light absorption and photocatalytic properties. Conversely, the piezocatalytic efficiency is maximized using the lowest Sb amount (1 at. %). The superior ferroelectric polarization observed in this case highly favors the adsorption of electrically charged species, in particular of the dye in the protonated form (Rh-β) and of OH, to the catalyst surface and the production of hydroxyl radicals responsible for dye degradation.
发现具有前所未有的性能和改进功能的新型催化材料,是设计用于废水净化的高级氧化工艺的一项重大挑战。在这项工作中,提出了锑(Sb)掺杂作为增强压电氧化锌(ZnO)薄膜光催化和压电催化性能的有效方法。为了研究掺杂剂所起的作用,当催化剂受到紫外线(UV)或超声波(US)照射时,研究了天然水源中广泛存在的染料污染物罗丹明-β(Rh-β)的降解情况。根据掺杂水平,可以适当设定催化剂的结构、光学和铁电性能,以最大限度提高染料降解效率。与照射源无关,在掺杂催化剂存在且掺杂剂用量最佳的情况下,观察到染料降解最快且完全。在ZnO:Sb样品中,掺杂最多的样品(5原子%)表现出改善的紫外光吸收和光催化性能。相反,使用最低的Sb含量(1原子%)时,压电催化效率最高。在这种情况下观察到的优异铁电极化极大地促进了带电物种,特别是质子化形式的染料(Rh-β)和OH,吸附到催化剂表面,并产生负责染料降解的羟基自由基。