Suppr超能文献

猎物的移动速度会影响“守株待兔”型捕食者的攻击速度和结构。

Prey speed influences the speed and structure of the raptorial strike of a 'sit-and-wait' predator.

机构信息

School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK.

出版信息

Biol Lett. 2020 May;16(5):20200098. doi: 10.1098/rsbl.2020.0098. Epub 2020 May 13.

Abstract

Predators must often employ flexible strategies to capture prey. Particular attention has been given to the strategies of visual predators that actively pursue their prey, but sit-and-wait predators have been largely overlooked, their strategies often characterized as stereotyped. Praying mantids are primarily sit-and-wait predators that often employ crypsis to catch their prey using a raptorial strike produced by their highly modified forelimbs. Here, we show that the raptorial strike of the Madagascan marbled mantis () varies in duration from 60 to 290 ms due to the tibial extension alone; slower strikes involve slower tibial extensions that may also be interrupted by a pause. The success of a strike is independent of its duration or the presence of these pauses. However, prey speed affects the duration of tibial extension and the probability of a pause occurring, both increasing at slower prey speeds. Adjusting the duration of the tibial extension according to prey speed allows mantids to time the final downward sweep of the tibia to their prey's approach. The use of visual inputs to adjust the motor pattern controlling forelimb movements shows that not all aspects of the strike are stereotyped and that sit-and-wait predators can produce behavioural flexibility.

摘要

捕食者通常必须采用灵活的策略来捕获猎物。人们特别关注主动追捕猎物的视觉捕食者的策略,但对坐以待兔的捕食者却关注甚少,它们的策略通常被认为是刻板的。螳螂主要是坐以待兔的捕食者,它们经常使用伪装来捕捉猎物,方法是用高度特化的前肢进行猛扑。在这里,我们表明马达加斯加大理石螳螂的猛扑持续时间可因胫骨伸展而在 60 到 290 毫秒之间变化;较慢的猛扑涉及较慢的胫骨伸展,也可能被暂停打断。猛扑的成功与否与其持续时间或是否存在这些暂停无关。然而,猎物的速度会影响胫骨伸展的持续时间和暂停发生的概率,在较慢的猎物速度下,这两个因素都会增加。根据猎物速度调整胫骨伸展的持续时间可以使螳螂能够根据猎物的接近情况调整胫骨向下扫动的时间。使用视觉输入来调整控制前肢运动的运动模式表明,并非猛扑的所有方面都是刻板的,而且坐以待兔的捕食者可以产生行为灵活性。

相似文献

1
Prey speed influences the speed and structure of the raptorial strike of a 'sit-and-wait' predator.
Biol Lett. 2020 May;16(5):20200098. doi: 10.1098/rsbl.2020.0098. Epub 2020 May 13.
4
Strike mechanics of an ambush predator: the spearing mantis shrimp.
J Exp Biol. 2012 Dec 15;215(Pt 24):4374-84. doi: 10.1242/jeb.075317.
5
Diurnal predators in dim light: the ability of mantids to prey for supper.
Environ Entomol. 2024 Jun 13;53(3):347-353. doi: 10.1093/ee/nvae036.
6
Modulation of prey capture kinematics in relation to prey distance helps predict success.
J Exp Biol. 2024 Jun 1;227(11). doi: 10.1242/jeb.247311. Epub 2024 Jun 12.
7
Fear on the move: predator hunting mode predicts variation in prey mortality and plasticity in prey spatial response.
J Anim Ecol. 2014 Jan;83(1):214-22. doi: 10.1111/1365-2656.12111. Epub 2013 Aug 5.
8
Pattern and Speed Interact to Hide Moving Prey.
Curr Biol. 2019 Sep 23;29(18):3109-3113.e3. doi: 10.1016/j.cub.2019.07.072. Epub 2019 Sep 12.
9
Balancing Biomechanical Constraints: Optimal Escape Speeds When There Is a Trade-off between Speed and Maneuverability.
Integr Comp Biol. 2015 Dec;55(6):1142-54. doi: 10.1093/icb/icv103. Epub 2015 Sep 2.
10
Feeding on toxic prey. The praying mantis (Mantodea) as predator of poisonous butterfly and moth (Lepidoptera) caterpillars.
Toxicon. 2017 Jun 1;131:16-19. doi: 10.1016/j.toxicon.2017.03.010. Epub 2017 Mar 11.

引用本文的文献

1
Turning lances into shields: flower mantids stretch their raptorial forelegs to avert and deflect predator attack.
Proc Biol Sci. 2025 Apr;292(2044):20243081. doi: 10.1098/rspb.2024.3081. Epub 2025 Apr 2.
2
Temporal action localisation in video data containing rabbit behavioural patterns.
Sci Rep. 2025 Feb 17;15(1):5710. doi: 10.1038/s41598-025-89687-6.
3
Optimal Gearing of Musculoskeletal Systems.
Integr Comp Biol. 2024 Sep 27;64(3):987-1006. doi: 10.1093/icb/icae072.
4
Modulation of prey capture kinematics in relation to prey distance helps predict success.
J Exp Biol. 2024 Jun 1;227(11). doi: 10.1242/jeb.247311. Epub 2024 Jun 12.
5
Dazzled by shine: gloss as an antipredator strategy in fast moving prey.
Behav Ecol. 2023 Jun 8;34(5):862-871. doi: 10.1093/beheco/arad046. eCollection 2023 Sep-Oct.
6
The ethology of wolves foraging on freshwater fish in a boreal ecosystem.
R Soc Open Sci. 2023 May 24;10(5):230210. doi: 10.1098/rsos.230210. eCollection 2023 May.
7
Frontiers in quantifying wildlife behavioural responses to chemical pollution.
Biol Rev Camb Philos Soc. 2022 Aug;97(4):1346-1364. doi: 10.1111/brv.12844. Epub 2022 Mar 1.

本文引用的文献

1
Medium compensation in a spring-actuated system.
J Exp Biol. 2020 Feb 25;223(Pt 4):jeb208678. doi: 10.1242/jeb.208678.
2
Predatory behavior changes with satiety or increased insulin levels in the praying mantis ().
J Exp Biol. 2019 Jun 11;222(Pt 11):jeb197673. doi: 10.1242/jeb.197673.
3
Interception by two predatory fly species is explained by a proportional navigation feedback controller.
J R Soc Interface. 2018 Oct 17;15(147):20180466. doi: 10.1098/rsif.2018.0466.
4
A Novel Form of Stereo Vision in the Praying Mantis.
Curr Biol. 2018 Feb 19;28(4):588-593.e4. doi: 10.1016/j.cub.2018.01.012. Epub 2018 Feb 8.
5
Heuristic Rules Underlying Dragonfly Prey Selection and Interception.
Curr Biol. 2017 Apr 24;27(8):1124-1137. doi: 10.1016/j.cub.2017.03.010. Epub 2017 Mar 30.
6
A Novel Interception Strategy in a Miniature Robber Fly with Extreme Visual Acuity.
Curr Biol. 2017 Mar 20;27(6):854-859. doi: 10.1016/j.cub.2017.01.050. Epub 2017 Mar 9.
7
Strength of forelimb lateralization predicts motor errors in an insect.
Biol Lett. 2016 Sep;12(9). doi: 10.1098/rsbl.2016.0547.
9
Insect stereopsis demonstrated using a 3D insect cinema.
Sci Rep. 2016 Jan 7;6:18718. doi: 10.1038/srep18718.
10
Feed-forward motor control of ultrafast, ballistic movements.
J Exp Biol. 2016 Feb;219(Pt 3):319-33. doi: 10.1242/jeb.130518. Epub 2015 Dec 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验