Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB3 2EG, UK; Eugene Bell Center for Regenerative Biology and Tissue Engineering, MBL, 7 MBL Street, Woods Hole, MA 02543, USA.
Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB3 2EG, UK.
Curr Biol. 2017 Mar 20;27(6):854-859. doi: 10.1016/j.cub.2017.01.050. Epub 2017 Mar 9.
Our visual system allows us to rapidly identify and intercept a moving object. When this object is far away, we base the trajectory on the target's location relative to an external frame of reference [1]. This process forms the basis for the constant bearing angle (CBA) model, a reactive strategy that ensures interception since the bearing angle, formed between the line joining pursuer and target (called the range vector) and an external reference line, is held constant [2-4]. The CBA model may be a fundamental and widespread strategy, as it is also known to explain the interception trajectories of bats and fish [5, 6]. Here, we show that the aerial attack of the tiny robber fly Holcocephala fusca is consistent with the CBA model. In addition, Holcocephala fusca displays a novel proactive strategy, termed "lock-on" phase, embedded with the later part of the flight. We found the object detection threshold for this species to be 0.13°, enabled by an extremely specialized, forward pointing fovea (∼5 ommatidia wide, interommatidial angle Δφ = 0.28°, photoreceptor acceptance angle Δρ = 0.27°). This study furthers our understanding of the accurate performance that a miniature brain can achieve in highly demanding sensorimotor tasks and suggests the presence of equivalent mechanisms for target interception across a wide range of taxa. VIDEO ABSTRACT.
我们的视觉系统使我们能够快速识别和拦截移动物体。当物体很远时,我们会根据目标相对于外部参考系的位置来确定轨迹[1]。这个过程构成了恒向角(CBA)模型的基础,CBA 模型是一种反应性策略,可确保拦截,因为追击者和目标之间的连线(称为距离矢量)与外部参考线之间形成的恒向角是固定的[2-4]。CBA 模型可能是一种基本且广泛存在的策略,因为它也被认为可以解释蝙蝠和鱼类的拦截轨迹[5,6]。在这里,我们表明微小的盗蝇 Holcocephala fusca 的空中攻击符合 CBA 模型。此外,Holcocephala fusca 还表现出一种新颖的主动策略,称为“锁定”阶段,嵌入在飞行的后期。我们发现该物种的物体检测阈值为 0.13°,这得益于极其专门的向前指向的中央凹(∼5 个小眼宽,小眼间角 Δφ=0.28°,光感受器接受角 Δρ=0.27°)。这项研究增进了我们对微型大脑在高要求的感觉运动任务中所表现出的精确性能的理解,并表明在广泛的分类群中存在用于目标拦截的等效机制。视频摘要。