包含兔子行为模式的视频数据中的时间动作定位

Temporal action localisation in video data containing rabbit behavioural patterns.

作者信息

Ilin Semyon, Borodacheva Julia, Shamsiev Ildar, Bondar Igor, Shichkina Yulia

机构信息

Saint Petersburg Electrotechnical University "LETI", Faculty of Computer Science and Technology, Saint Petersburg, 197022, Russian Federation.

Institute of Higher Nervous Activity and Neurophysiology, RAS, Moscow, 117485, Russian Federation.

出版信息

Sci Rep. 2025 Feb 17;15(1):5710. doi: 10.1038/s41598-025-89687-6.

Abstract

In this paper we present the results of a research on artificial intelligence based approaches to temporal action localisation in video recordings of rabbit behavioural patterns. When using the artificial intelligence, special attention should be paid to quality and quantity of data collected for the research. Conducting the experiments in science may take long time and involve expensive preparatory work. Artificial intelligence based approaches can be applied to different kinds of actors in the video including animals, humans, intelligent agents, etc. The peculiarities of using these approaches in specific research conditions can be of particular importance for project cost reduction. In this paper we analyze the peculiarities of using the frame-by-frame classification based approach to temporal localisation of rabbit actions in video data and propose a metric for evaluating its consistency. The analysis of existing approaches described in the literature indicates that the aforementioned approach has high accuracy (up to 99%) and F1 score of temporal action localisation (up to 0.97) thus fulfilling conditions for substantial reduction or total exclusion of manual data labeling from the process of studying actor behaviour patterns in video data collected in experimental setting. We conducted further investigation in order to determine the optimal number of manually labeled frames required to achieve 99% accuracy of automatic labeling and studied the dependence of labeling accuracy on the number of actors presented in the training data.

摘要

在本文中,我们展示了一项关于基于人工智能的方法在兔子行为模式视频记录中的时间动作定位研究的结果。使用人工智能时,应特别注意为该研究收集的数据的质量和数量。在科学领域进行实验可能需要很长时间,并且涉及昂贵的准备工作。基于人工智能的方法可应用于视频中的不同类型的主体,包括动物、人类、智能代理等。在特定研究条件下使用这些方法的特点对于降低项目成本可能尤为重要。在本文中,我们分析了在视频数据中使用基于逐帧分类的方法进行兔子动作时间定位的特点,并提出了一种评估其一致性的指标。对文献中描述的现有方法的分析表明,上述方法具有较高的准确率(高达99%)和时间动作定位的F1分数(高达0.97),从而满足了在实验设置中收集的视频数据中研究主体行为模式的过程中大幅减少或完全排除手动数据标注的条件。我们进行了进一步的研究,以确定实现99%自动标注准确率所需的手动标注帧数,并研究了标注准确率与训练数据中呈现的主体数量之间的关系。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d18f/11832728/07309b7bf156/41598_2025_89687_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索