Suppr超能文献

硫氧还蛋白 f 赋予转基因烟草耐渗透胁迫能力。

Thioredoxin f Confers Osmotic Stress Tolerance in Transgenic Tobacco.

机构信息

Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.

Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Qingdao 266237, China.

出版信息

Int J Mol Sci. 2020 May 8;21(9):3335. doi: 10.3390/ijms21093335.

Abstract

Water deficit caused by osmotic stress and drought limits crop yield and tree growth worldwide. Screening and identifying candidate genes from stress-resistant species are a genetic engineering strategy to increase drought resistance. In this study, an increased concentration of mannitol resulted in elevated expression of thioredoxin f () in the nonsecretor mangrove species . By means of amino acid sequence and phylogenetic analysis, the mangrove Trx was classified as an f-type thioredoxin. Subcellular localization showed that KcTrxf localizes to chloroplasts. Enzymatic activity characterization revealed that KcTrxf recombinant protein possesses the disulfide reductase function. overexpression contributes to osmotic and drought tolerance in tobacco in terms of fresh weight, root length, malondialdehyde (MDA) content, and hydrogen peroxide (HO) production. KcTrxf was shown to reduce the stomatal aperture by enhancing K efflux in guard cells, which increased the water-retaining capacity in leaves under drought conditions. Notably, the abscisic acid (ABA) sensitivity was increased in -transgenic tobacco, which benefits plants exposed to drought by reducing water loss by promoting stomatal closure. -transgenic plants limited drought-induced HO in leaves, which could reduce lipid peroxidation and retain the membrane integrity. Additionally, glutathione (GSH) contributing to reactive oxygen species (ROS) scavenging and transgenic plants are more efficient at regenerating GSH from oxidized glutathione (GSSG) under conditions of drought stress. Notably, -transgenic plants had increased glucose and fructose contents under drought stress conditions, presumably resulting from KcTrxf-promoted starch degradation under water stress. We conclude that KcTrxf contributes to drought tolerance by increasing the water status, by enhancing osmotic adjustment, and by maintaining ROS homeostasis in transgene plants.

摘要

渗透胁迫和干旱导致的水分亏缺限制了全球作物产量和树木生长。筛选和鉴定抗逆物种的候选基因是一种提高抗旱性的基因工程策略。在这项研究中,甘露醇浓度的升高导致非分泌型红树林物种 中硫氧还蛋白 f ()的表达升高。通过氨基酸序列和系统发育分析,该红树林 Trx 被归类为 f 型硫氧还蛋白。亚细胞定位表明 KcTrxf 定位于叶绿体。酶活性特征表明,KcTrxf 重组蛋白具有二硫键还原酶功能。过表达 KcTrxf 在烟草中增强了耐渗和耐旱性,表现在鲜重、根长、丙二醛 (MDA)含量和过氧化氢 (HO)生成方面。研究表明,KcTrxf 通过增强保卫细胞中的钾外流来增加气孔开度,从而在干旱条件下增加叶片的保水能力。值得注意的是,ABA 敏感性在 -转基因烟草中增加,这通过促进气孔关闭减少水分损失,从而使植物受益于干旱胁迫。-转基因植物限制了叶片中干旱诱导的 HO,这可以减少脂质过氧化并保持膜完整性。此外,在干旱胁迫条件下,GSH 有助于清除活性氧 (ROS),并且转基因植物在 GSH 从氧化型 GSSG 再生方面更有效。值得注意的是,-转基因植物在干旱胁迫条件下葡萄糖和果糖含量增加,这可能是由于 KcTrxf 在水分胁迫下促进淀粉降解所致。我们得出结论,KcTrxf 通过增加水势、增强渗透调节以及维持转基因植物中的 ROS 稳态来提高耐旱性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4863/7247566/ab7dd1152669/ijms-21-03335-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验