Institute of Research, Development and Innovation in Biotechnology of Elche (IDiBE) and Molecular and Cell Biology Institute (IBMC), Miguel Hernández University (UMH), 03202 Alicante, Spain.
Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group, Catalan Institute of Oncology, 17005 Girona, Spain.
Viruses. 2020 May 10;12(5):525. doi: 10.3390/v12050525.
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) causing the COVID-19 respiratory disease pandemic utilizes unique 2'-O-methyltransferase (2'-O-MTase) capping machinery to camouflage its RNA from innate immune recognition. The nsp16 catalytic subunit of the 2'-O-MTase is unusual in its requirement for a stimulatory subunit (nsp10) to catalyze the ribose 2'-O-methylation of the viral RNA cap. Here we provide a computational basis for drug repositioning or de novo drug development based on three differential traits of the intermolecular interactions of the SARS-CoV-2-specific nsp16/nsp10 heterodimer, namely: (1) the S-adenosyl-l-methionine-binding pocket of nsp16, (2) the unique "activating surface" between nsp16 and nsp10, and (3) the RNA-binding groove of nsp16. We employed ≈9000 U.S. Food and Drug Administration (FDA)-approved investigational and experimental drugs from the DrugBank repository for docking virtual screening. After molecular dynamics calculations of the stability of the binding modes of high-scoring nsp16/nsp10-drug complexes, we considered their pharmacological overlapping with functional modules of the virus-host interactome that is relevant to the viral lifecycle, and to the clinical features of COVID-19. Some of the predicted drugs (e.g., tegobuvir, sonidegib, siramesine, antrafenine, bemcentinib, itacitinib, or phthalocyanine) might be suitable for repurposing to pharmacologically reactivate innate immune restriction and antagonism of SARS-CoV-2 RNAs lacking 2'-O-methylation.
严重急性呼吸综合征冠状病毒 2(SARS-CoV-2)引起的 COVID-19 呼吸道疾病大流行利用独特的 2'-O-甲基转移酶(2'-O-MTase)加帽机制来掩盖其 RNA 免受先天免疫识别。2'-O-MTase 的催化亚基 nsp16 不同寻常的是,它需要一个刺激亚基(nsp10)来催化病毒 RNA 帽的核糖 2'-O-甲基化。在这里,我们基于 SARS-CoV-2 特异性 nsp16/nsp10 异源二聚体的分子间相互作用的三个差异特征,提供了药物重新定位或从头开发药物的计算基础,即:(1)nsp16 的 S-腺苷-L-甲硫氨酸结合口袋,(2)nsp16 和 nsp10 之间独特的“激活表面”,和(3)nsp16 的 RNA 结合槽。我们使用来自 DrugBank 存储库的 ≈9000 种美国食品和药物管理局(FDA)批准的研究性和实验性药物进行对接虚拟筛选。在对高评分 nsp16/nsp10-药物复合物结合模式的稳定性进行分子动力学计算后,我们考虑了它们与病毒-宿主相互作用组的功能模块的药理学重叠,这些模块与病毒生命周期以及 COVID-19 的临床特征相关。一些预测药物(例如tegobuvir、sonidegib、siramesine、antrafenine、bemcentinib、itacitinib 或酞菁)可能适合重新用于药理学上重新激活先天免疫限制和拮抗缺乏 2'-O-甲基化的 SARS-CoV-2 RNA。