Suppr超能文献

优化鼻咽和诱导痰低生物量标本 16S rRNA 基因谱分析。

Optimizing 16S rRNA gene profile analysis from low biomass nasopharyngeal and induced sputum specimens.

机构信息

Division of Medical Microbiology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.

Department of Statistics and Actuarial Science, Faculty of Economic and Management Sciences, Stellenbosch University, Stellenbosch, South Africa.

出版信息

BMC Microbiol. 2020 May 12;20(1):113. doi: 10.1186/s12866-020-01795-7.

Abstract

BACKGROUND

Careful consideration of experimental artefacts is required in order to successfully apply high-throughput 16S ribosomal ribonucleic acid (rRNA) gene sequencing technology. Here we introduce experimental design, quality control and "denoising" approaches for sequencing low biomass specimens.

RESULTS

We found that bacterial biomass is a key driver of 16S rRNA gene sequencing profiles generated from bacterial mock communities and that the use of different deoxyribonucleic acid (DNA) extraction methods [DSP Virus/Pathogen Mini Kit® (Kit-QS) and ZymoBIOMICS DNA Miniprep Kit (Kit-ZB)] and storage buffers [PrimeStore® Molecular Transport medium (Primestore) and Skim-milk, Tryptone, Glucose and Glycerol (STGG)] further influence these profiles. Kit-QS better represented hard-to-lyse bacteria from bacterial mock communities compared to Kit-ZB. Primestore storage buffer yielded lower levels of background operational taxonomic units (OTUs) from low biomass bacterial mock community controls compared to STGG. In addition to bacterial mock community controls, we used technical repeats (nasopharyngeal and induced sputum processed in duplicate, triplicate or quadruplicate) to further evaluate the effect of specimen biomass and participant age at specimen collection on resultant sequencing profiles. We observed a positive correlation (r = 0.16) between specimen biomass and participant age at specimen collection: low biomass technical repeats (represented by < 500 16S rRNA gene copies/μl) were primarily collected at < 14 days of age. We found that low biomass technical repeats also produced higher alpha diversities (r = - 0.28); 16S rRNA gene profiles similar to no template controls (Primestore); and reduced sequencing reproducibility. Finally, we show that the use of statistical tools for in silico contaminant identification, as implemented through the decontam package in R, provides better representations of indigenous bacteria following decontamination.

CONCLUSIONS

We provide insight into experimental design, quality control steps and "denoising" approaches for 16S rRNA gene high-throughput sequencing of low biomass specimens. We highlight the need for careful assessment of DNA extraction methods and storage buffers; sequence quality and reproducibility; and in silico identification of contaminant profiles in order to avoid spurious results.

摘要

背景

为了成功应用高通量 16S 核糖体核糖核酸(rRNA)基因测序技术,需要仔细考虑实验因素。本文介绍了用于测序低生物量样本的实验设计、质量控制和“去噪”方法。

结果

我们发现细菌生物量是从细菌模拟群落中产生的 16S rRNA 基因测序图谱的关键驱动因素,并且使用不同的脱氧核糖核酸(DNA)提取方法[DSP Virus/Pathogen Mini Kit®(试剂盒-QS)和 ZymoBIOMICS DNA Miniprep Kit(试剂盒-ZB)]和储存缓冲液[PrimeStore®Molecular Transport Medium(Primestore)和脱脂乳、胰蛋白胨、葡萄糖和甘油(STGG)]进一步影响这些图谱。与试剂盒-ZB 相比,试剂盒-QS 更好地代表了来自细菌模拟群落的难裂解细菌。与 STGG 相比,Primestore 储存缓冲液从低生物量细菌模拟群落对照中产生的背景操作分类单元(OTU)水平较低。除了细菌模拟群落对照外,我们还使用技术重复(鼻咽和诱导痰分别处理两次、三次或四次)进一步评估标本生物量和标本采集时参与者年龄对最终测序图谱的影响。我们观察到标本生物量和标本采集时参与者年龄之间存在正相关关系(r=0.16):低生物量技术重复(代表<500 16S rRNA 基因拷贝/μl)主要在<14 天龄时采集。我们发现低生物量技术重复也产生了更高的 alpha 多样性(r=-0.28);16S rRNA 基因图谱类似于无模板对照(Primestore);并且降低了测序重现性。最后,我们表明,使用统计工具进行基于计算的污染物识别,如 R 中的 decontam 包实现,在去污后可以更好地代表土著细菌。

结论

我们提供了有关低生物量标本 16S rRNA 基因高通量测序的实验设计、质量控制步骤和“去噪”方法的见解。我们强调需要仔细评估 DNA 提取方法和储存缓冲液;序列质量和重现性;以及基于计算的污染物图谱识别,以避免虚假结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/987b/7218582/f63cb40b6c83/12866_2020_1795_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验