Suppr超能文献

用于识别严重急性呼吸综合征冠状病毒2(SARS-CoV-2)可成药蛋白配体的先进工具。

State-of-the-art tools to identify druggable protein ligand of SARS-CoV-2.

作者信息

Azeez Sayed Abdul, Alhashim Zahra Ghalib, Al Otaibi Waad Mohammed, Alsuwat Hind Saleh, Ibrahim Abdallah M, Almandil Noor B, Borgio J Francis

机构信息

Department of Genetic Research, Institute for Research and Medical Consultation (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia.

College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia.

出版信息

Arch Med Sci. 2020 Mar 27;16(3):497-507. doi: 10.5114/aoms.2020.94046. eCollection 2020.

Abstract

INTRODUCTION

The SARS-CoV-2 (previously 2019-nCoV) outbreak in Wuhan, China and other parts of the world affects people and spreads coronavirus disease 2019 (COVID-19) through human-to-human contact, with a mortality rate of > 2%. There are no approved drugs or vaccines yet available against SARS-CoV-2.

MATERIAL AND METHODS

State-of-the-art tools based on in-silico methods are a cost-effective initial approach for identifying appropriate ligands against SARS-CoV-2. The present study developed the 3D structure of the envelope and nucleocapsid phosphoprotein of SARS-CoV-2, and molecular docking analysis was done against various ligands.

RESULTS

The highest log octanol/water partition coefficient, high number of hydrogen bond donors and acceptors, lowest non-bonded interaction energy between the receptor and the ligand, and high binding affinity were considered for the best ligand for the envelope (mycophenolic acid: log = 3.00; D = -10.2567 kcal/mol; p = 7.713 µM) and nucleocapsid phosphoprotein (1-[(2,4-dichlorophenyl)methyl]pyrazole-3,5-dicarboxylic acid: log = 2.901; D = -12.2112 kcal/mol; p = 7.885 µM) of SARS-CoV-2.

CONCLUSIONS

The study identifies the most potent compounds against the SARS-CoV-2 envelope and nucleocapsid phosphoprotein through state-of-the-art tools based on an in-silico approach. A combination of these two ligands could be the best option to consider for further detailed studies to develop a drug for treating patients infected with SARS-CoV-2, COVID-19.

摘要

引言

中国武汉及世界其他地区爆发的严重急性呼吸综合征冠状病毒2型(SARS-CoV-2,先前称为2019-nCoV)疫情影响了众多人群,并通过人际接触传播2019冠状病毒病(COVID-19),死亡率超过2%。目前尚无针对SARS-CoV-2的获批药物或疫苗。

材料与方法

基于计算机模拟方法的先进工具是识别针对SARS-CoV-2的合适配体的一种经济有效的初始方法。本研究构建了SARS-CoV-2包膜和核衣壳磷蛋白的三维结构,并针对各种配体进行了分子对接分析。

结果

对于SARS-CoV-2包膜的最佳配体(霉酚酸:log = 3.00;D = -10.2567千卡/摩尔;p = 7.713微摩尔)和核衣壳磷蛋白(1-[(2,4-二氯苯基)甲基]吡唑-3,5-二羧酸:log = 2.901;D = -12.2112千卡/摩尔;p = 7.885微摩尔),考虑了最高的正辛醇/水分配系数对数、大量的氢键供体和受体、受体与配体之间最低的非键相互作用能以及高结合亲和力。

结论

本研究通过基于计算机模拟方法的先进工具,确定了针对SARS-CoV-2包膜和核衣壳磷蛋白的最有效化合物。这两种配体的组合可能是进一步详细研究以开发治疗SARS-CoV-2感染患者(COVID-19)药物的最佳选择。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bbe0/7212236/ca7c521aeabf/AMS-16-3-40234-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验