Suppr超能文献

一种用于 TCR-Seq 和 RNA-Seq 数据的超高灵敏 T 细胞受体检测方法。

An ultra-sensitive T-cell receptor detection method for TCR-Seq and RNA-Seq data.

机构信息

Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.

Department of Biotechnology, College of Life Sciences, Anhui Normal University, Wuhu, China.

出版信息

Bioinformatics. 2020 Aug 1;36(15):4255-4262. doi: 10.1093/bioinformatics/btaa432.

Abstract

MOTIVATION

T-cell receptors (TCRs) function to recognize antigens and play vital roles in T-cell immunology. Surveying TCR repertoires by characterizing complementarity-determining region 3 (CDR3) is a key issue. Due to the high diversity of CDR3 and technological limitation, accurate characterization of CDR3 repertoires remains a great challenge.

RESULTS

We propose a computational method named CATT for ultra-sensitive and precise TCR CDR3 sequences detection. CATT can be applied on TCR sequencing, RNA-Seq and single-cell TCR(RNA)-Seq data to characterize CDR3 repertoires. CATT integrated de Bruijn graph-based micro-assembly algorithm, data-driven error correction model and Bayesian inference algorithm, to self-adaptively and ultra-sensitively characterize CDR3 repertoires with high performance. Benchmark results of datasets from in silico and experimental data demonstrated that CATT showed superior recall and precision compared with existing tools, especially for data with short read length and small size and single-cell sequencing data. Thus, CATT will be a useful tool for TCR analysis in researches of cancer and immunology.

AVAILABILITY AND IMPLEMENTATION

http://bioinfo.life.hust.edu.cn/CATT or https://github.com/GuoBioinfoLab/CATT.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

T 细胞受体 (TCRs) 的功能是识别抗原,并在 T 细胞免疫学中发挥重要作用。通过表征互补决定区 3 (CDR3) 来调查 TCR 库是一个关键问题。由于 CDR3 的高度多样性和技术限制,准确表征 CDR3 库仍然是一个巨大的挑战。

结果

我们提出了一种名为 CATT 的计算方法,用于超灵敏和精确的 TCR CDR3 序列检测。CATT 可应用于 TCR 测序、RNA-Seq 和单细胞 TCR(RNA)-Seq 数据,以表征 CDR3 库。CATT 集成了基于 de Bruijn 图的微组装算法、数据驱动的错误校正模型和贝叶斯推断算法,以自适应和超灵敏地表征具有高性能的 CDR3 库。来自模拟和实验数据的数据集的基准测试结果表明,CATT 与现有工具相比,具有更高的召回率和精度,尤其是对于短读长、小尺寸和单细胞测序数据。因此,CATT 将成为癌症和免疫学研究中 TCR 分析的有用工具。

可用性和实现

http://bioinfo.life.hust.edu.cn/CATThttps://github.com/GuoBioinfoLab/CATT。

补充信息

补充数据可在生物信息学在线获得。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验