Suppr超能文献

一种基于晶格玻尔兹曼正向模型在GPU并行化上的荧光漫射光学层析成像方法

[A Method for Fluorescent Diffuse Optical Tomography Based on Lattice Boltzmann Forward Model on GPU Parallelization].

作者信息

Wu Huandi, Yan Zhuangzhi, Cen Xingxing

机构信息

School of Communication and Information Engineering, Shanghai University, Shanghai, 200444.

出版信息

Zhongguo Yi Liao Qi Xie Za Zhi. 2020 Feb 8;44(2):95-100. doi: 10.3969/j.issn.1671-7104.2020.02.001.

Abstract

Fluorescent Diffuse Optical Tomography (FDOT) is an emerging imaging method with great prospects in fields of biology and medicine. However, the current solutions to the forward problem in FDOT are time consuming, which greatly limit the application. We proposed a method for FDOT based on Lattice Boltzmann forward model on GPU to greatly improve the computational efficiency. The Lattice Boltzmann Method (LBM) was used to construct the optical transmission model. This method separated the LBM into collision, streaming and boundary processing processes on GPUs to perform the LBM efficiently, which were local computational and inefficient on CPU. The feasibility of the proposed method was verified by the numerical phantom and the physical phantom experiments. The experimental results showed that the proposed method achieved the best performance of a 118-fold speed up under the precondition of simulation accuracy, comparing to the diffusion equation implemented by Finite Element Method (FEM) on CPU. Thus, the LBM on the GPU may efficiently solve the forward problem in FDOT.

摘要

荧光漫射光学层析成像(FDOT)是一种在生物学和医学领域具有广阔前景的新兴成像方法。然而,目前FDOT中正向问题的解决方案耗时较长,这极大地限制了其应用。我们提出了一种基于GPU上的格子玻尔兹曼正向模型的FDOT方法,以大幅提高计算效率。采用格子玻尔兹曼方法(LBM)构建光传输模型。该方法将LBM在GPU上分离为碰撞、流和边界处理过程,以高效执行LBM,而这些过程在CPU上是局部计算且效率低下的。通过数值模型和物理模型实验验证了该方法的可行性。实验结果表明,与在CPU上用有限元方法(FEM)实现的扩散方程相比,该方法在模拟精度的前提下实现了最佳性能,加速比达到118倍。因此,GPU上的LBM可以有效地解决FDOT中的正向问题。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验