文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

在线搜索引擎趋势与冠状病毒病(COVID-19)发病的相关性:信息流行病学研究。

Correlations of Online Search Engine Trends With Coronavirus Disease (COVID-19) Incidence: Infodemiology Study.

机构信息

Department of Otolaryngology-Head and Neck Surgery and Communicative Disorders, University of Louisville, Louisville, KY, United States.

Rhinology, Sinus & Skull Base, Kentuckiana Ear Nose Throat, Louisville, KY, United States.

出版信息

JMIR Public Health Surveill. 2020 May 21;6(2):e19702. doi: 10.2196/19702.


DOI:10.2196/19702
PMID:32401211
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7244220/
Abstract

BACKGROUND: The coronavirus disease (COVID-19) is the latest pandemic of the digital age. With the internet harvesting large amounts of data from the general population in real time, public databases such as Google Trends (GT) and the Baidu Index (BI) can be an expedient tool to assist public health efforts. OBJECTIVE: The aim of this study is to apply digital epidemiology to the current COVID-19 pandemic to determine the utility of providing adjunctive epidemiologic information on outbreaks of this disease and evaluate this methodology in the case of future pandemics. METHODS: An epidemiologic time series analysis of online search trends relating to the COVID-19 pandemic was performed from January 9, 2020, to April 6, 2020. BI was used to obtain online search data for China, while GT was used for worldwide data, the countries of Italy and Spain, and the US states of New York and Washington. These data were compared to real-world confirmed cases and deaths of COVID-19. Chronologic patterns were assessed in relation to disease patterns, significant events, and media reports. RESULTS: Worldwide search terms for shortness of breath, anosmia, dysgeusia and ageusia, headache, chest pain, and sneezing had strong correlations (r>0.60, P<.001) to both new daily confirmed cases and deaths from COVID-19. GT COVID-19 (search term) and GT coronavirus (virus) searches predated real-world confirmed cases by 12 days (r=0.85, SD 0.10 and r=0.76, SD 0.09, respectively, P<.001). Searches for symptoms of diarrhea, fever, shortness of breath, cough, nasal obstruction, and rhinorrhea all had a negative lag greater than 1 week compared to new daily cases, while searches for anosmia and dysgeusia peaked worldwide and in China with positive lags of 5 days and 6 weeks, respectively, corresponding with widespread media coverage of these symptoms in COVID-19. CONCLUSIONS: This study demonstrates the utility of digital epidemiology in providing helpful surveillance data of disease outbreaks like COVID-19. Although certain online search trends for this disease were influenced by media coverage, many search terms reflected clinical manifestations of the disease and showed strong correlations with real-world cases and deaths.

摘要

背景:冠状病毒病(COVID-19)是数字时代的最新大流行疾病。随着互联网实时从普通人群中收集大量数据,谷歌趋势(GT)和百度指数(BI)等公共数据库可以成为辅助公共卫生工作的便捷工具。

目的:本研究旨在将数字流行病学应用于当前的 COVID-19 大流行,以确定提供有关该疾病暴发的辅助流行病学信息的效用,并评估该方法在未来大流行中的应用。

方法:对 2020 年 1 月 9 日至 2020 年 4 月 6 日期间与 COVID-19 大流行相关的在线搜索趋势进行了流行病学时间序列分析。使用 BI 获得中国的在线搜索数据,GT 用于全球数据、意大利和西班牙的数据以及美国纽约州和华盛顿州的数据。将这些数据与 COVID-19 的实际确诊病例和死亡人数进行了比较。评估疾病模式、重大事件和媒体报道与时间模式的关系。

结果:全球范围内搜索呼吸急促、嗅觉丧失、味觉障碍和味觉丧失、头痛、胸痛和打喷嚏的搜索词与 COVID-19 的新日确诊病例和死亡人数有很强的相关性(r>0.60,P<.001)。GT COVID-19(搜索词)和 GT 冠状病毒(病毒)搜索比实际确诊病例提前了 12 天(r=0.85,SD 0.10 和 r=0.76,SD 0.09,P<.001)。搜索腹泻、发烧、呼吸急促、咳嗽、鼻塞和鼻漏等症状的时间滞后均大于 1 周,而全球和中国的嗅觉丧失和味觉障碍搜索均达到峰值,分别为 5 天和 6 周,这与 COVID-19 中这些症状的广泛媒体报道相对应。

结论:本研究表明,数字流行病学在提供 COVID-19 等疾病暴发的有用监测数据方面具有实用性。虽然某些与该疾病相关的在线搜索趋势受到媒体报道的影响,但许多搜索词反映了疾病的临床表现,与实际病例和死亡人数有很强的相关性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d82/7244220/539ea43c2b9d/publichealth_v6i2e19702_fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d82/7244220/7d6208630228/publichealth_v6i2e19702_fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d82/7244220/a642180f088d/publichealth_v6i2e19702_fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d82/7244220/fe316442c15b/publichealth_v6i2e19702_fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d82/7244220/b3ae184da3a1/publichealth_v6i2e19702_fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d82/7244220/6f76cbadb16e/publichealth_v6i2e19702_fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d82/7244220/539ea43c2b9d/publichealth_v6i2e19702_fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d82/7244220/7d6208630228/publichealth_v6i2e19702_fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d82/7244220/a642180f088d/publichealth_v6i2e19702_fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d82/7244220/fe316442c15b/publichealth_v6i2e19702_fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d82/7244220/b3ae184da3a1/publichealth_v6i2e19702_fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d82/7244220/6f76cbadb16e/publichealth_v6i2e19702_fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d82/7244220/539ea43c2b9d/publichealth_v6i2e19702_fig6.jpg

相似文献

[1]
Correlations of Online Search Engine Trends With Coronavirus Disease (COVID-19) Incidence: Infodemiology Study.

JMIR Public Health Surveill. 2020-5-21

[2]
Association of Search Query Interest in Gastrointestinal Symptoms With COVID-19 Diagnosis in the United States: Infodemiology Study.

JMIR Public Health Surveill. 2020-7-17

[3]
Understanding the Community Risk Perceptions of the COVID-19 Outbreak in South Korea: Infodemiology Study.

J Med Internet Res. 2020-9-29

[4]
Assessment of the Impact of Media Coverage on COVID-19-Related Google Trends Data: Infodemiology Study.

J Med Internet Res. 2020-8-10

[5]
Tracking COVID-19 in Europe: Infodemiology Approach.

JMIR Public Health Surveill. 2020-4-20

[6]
The Influence of Media Coverage and Governmental Policies on Google Queries Related to COVID-19 Cutaneous Symptoms: Infodemiology Study.

JMIR Public Health Surveill. 2021-2-25

[7]
Association of the COVID-19 pandemic with Internet Search Volumes: A Google Trends Analysis.

Int J Infect Dis. 2020-4-17

[8]
Correlations Between COVID-19 Cases and Google Trends Data in the United States: A State-by-State Analysis.

Mayo Clin Proc. 2020-8-20

[9]
Online Public Attention During the Early Days of the COVID-19 Pandemic: Infoveillance Study Based on Baidu Index.

JMIR Public Health Surveill. 2020-10-22

[10]
Regional Infoveillance of COVID-19 Case Rates: Analysis of Search-Engine Query Patterns.

J Med Internet Res. 2020-7-30

引用本文的文献

[1]
Wastewater Surveillance for Group A in a Small City.

Pathogens. 2025-7-3

[2]
A Forecast Model for COVID-19 Spread Trends Using Blog and GPS Data from Smartphones.

Entropy (Basel). 2025-6-26

[3]
Infoveillance and bibliometric analysis of COVID-19 in Nigeria.

Public Health Chall. 2023-3-21

[4]
Discovering Time-Varying Public Interest for COVID-19 Case Prediction in South Korea Using Search Engine Queries: Infodemiology Study.

J Med Internet Res. 2024-12-16

[5]
Online Search Patterns about Vaccination: A National Study.

Port J Public Health. 2022-11-24

[6]
Digital epidemiology: harnessing big data for early detection and monitoring of viral outbreaks.

Infect Prev Pract. 2024-6-29

[7]
MGLEP: Multimodal Graph Learning for Modeling Emerging Pandemics with Big Data.

Sci Rep. 2024-7-16

[8]
Short- and Long-Term Predicted and Witnessed Consequences of Digital Surveillance During the COVID-19 Pandemic: Scoping Review.

JMIR Public Health Surveill. 2024-5-24

[9]
Changes to Public Health Surveillance Methods Due to the COVID-19 Pandemic: Scoping Review.

JMIR Public Health Surveill. 2024-1-19

[10]
Web-Based Search Volume for HIV Tests and HIV-Testing Preferences During the COVID-19 Pandemic in Japan: Infodemiology Study.

JMIR Form Res. 2024-1-18

本文引用的文献

[1]
COVID-19 Anosmia Reporting Tool: Initial Findings.

Otolaryngol Head Neck Surg. 2020-4-28

[2]
Symptom Screening at Illness Onset of Health Care Personnel With SARS-CoV-2 Infection in King County, Washington.

JAMA. 2020-5-26

[3]
Use of Google Trends to investigate loss-of-smell-related searches during the COVID-19 outbreak.

Int Forum Allergy Rhinol. 2020-6-15

[4]
Neurologic Manifestations of Hospitalized Patients With Coronavirus Disease 2019 in Wuhan, China.

JAMA Neurol. 2020-6-1

[5]
End-Stage Heart Failure With COVID-19: Strong Evidence of Myocardial Injury by 2019-nCoV.

JACC Heart Fail. 2020-6

[6]
Retrospective analysis of the possibility of predicting the COVID-19 outbreak from Internet searches and social media data, China, 2020.

Euro Surveill. 2020-3

[7]
Applications of Google Search Trends for risk communication in infectious disease management: A case study of the COVID-19 outbreak in Taiwan.

Int J Infect Dis. 2020-3-12

[8]
The Application of Internet-Based Sources for Public Health Surveillance (Infoveillance): Systematic Review.

J Med Internet Res. 2020-3-13

[9]
Clinical Characteristics of Coronavirus Disease 2019 in China.

N Engl J Med. 2020-2-28

[10]
A novel coronavirus outbreak of global health concern.

Lancet. 2020-2-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索