Department of Computing Science, Umeå University, Umeå, Sweden.
AI Center, FPT Software, Hanoi, Vietnam.
Sci Rep. 2024 Jul 16;14(1):16377. doi: 10.1038/s41598-024-67146-y.
Accurate forecasting and analysis of emerging pandemics play a crucial role in effective public health management and decision-making. Traditional approaches primarily rely on epidemiological data, overlooking other valuable sources of information that could act as sensors or indicators of pandemic patterns. In this paper, we propose a novel framework, MGLEP, that integrates temporal graph neural networks and multi-modal data for learning and forecasting. We incorporate big data sources, including social media content, by utilizing specific pre-trained language models and discovering the underlying graph structure among users. This integration provides rich indicators of pandemic dynamics through learning with temporal graph neural networks. Extensive experiments demonstrate the effectiveness of our framework in pandemic forecasting and analysis, outperforming baseline methods across different areas, pandemic situations, and prediction horizons. The fusion of temporal graph learning and multi-modal data enables a comprehensive understanding of the pandemic landscape with less time lag, cheap cost, and more potential information indicators.
准确预测和分析新出现的大流行病对于有效的公共卫生管理和决策至关重要。传统方法主要依赖于流行病学数据,而忽略了其他可能作为大流行模式传感器或指标的有价值的信息来源。在本文中,我们提出了一种新的框架 MGLEP,该框架将时间图神经网络和多模态数据集成在一起进行学习和预测。我们通过利用特定的预训练语言模型和发现用户之间的潜在图结构,整合了包括社交媒体内容在内的大数据源。这种集成通过使用时间图神经网络进行学习,提供了大流行动态的丰富指标。广泛的实验表明,我们的框架在大流行病预测和分析方面非常有效,在不同领域、大流行病情况和预测时间跨度上均优于基线方法。时间图学习和多模态数据的融合使我们能够更及时、更经济、更全面地了解大流行病的全貌,并获得更多潜在的信息指标。