Suppr超能文献

RNA 诱导的构象转换和 G3BP 的聚集通过凝聚驱动应激颗粒的组装。

RNA-Induced Conformational Switching and Clustering of G3BP Drive Stress Granule Assembly by Condensation.

机构信息

Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany.

Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany.

出版信息

Cell. 2020 Apr 16;181(2):346-361.e17. doi: 10.1016/j.cell.2020.03.049.

Abstract

Stressed cells shut down translation, release mRNA molecules from polysomes, and form stress granules (SGs) via a network of interactions that involve G3BP. Here we focus on the mechanistic underpinnings of SG assembly. We show that, under non-stress conditions, G3BP adopts a compact auto-inhibited state stabilized by electrostatic intramolecular interactions between the intrinsically disordered acidic tracts and the positively charged arginine-rich region. Upon release from polysomes, unfolded mRNAs outcompete G3BP auto-inhibitory interactions, engendering a conformational transition that facilitates clustering of G3BP through protein-RNA interactions. Subsequent physical crosslinking of G3BP clusters drives RNA molecules into networked RNA/protein condensates. We show that G3BP condensates impede RNA entanglement and recruit additional client proteins that promote SG maturation or induce a liquid-to-solid transition that may underlie disease. We propose that condensation coupled to conformational rearrangements and heterotypic multivalent interactions may be a general principle underlying RNP granule assembly.

摘要

受压细胞关闭翻译,通过涉及 G3BP 的相互作用网络将 mRNA 分子从多核糖体中释放出来,并形成应激颗粒(SGs)。在这里,我们专注于 SG 组装的机制基础。我们表明,在非应激条件下,G3BP 采用紧凑的自动抑制状态,该状态通过固有无序的酸性片段与带正电荷的富含精氨酸的区域之间的静电分子内相互作用来稳定。从多核糖体释放后,展开的 mRNA 与 G3BP 自动抑制相互作用竞争,引发构象转变,通过蛋白-RNA 相互作用促进 G3BP 的聚集。随后,G3BP 聚集体的物理交联将 RNA 分子驱动到网络化的 RNA/蛋白凝聚物中。我们表明,G3BP 凝聚物阻碍 RNA 缠结,并募集额外的客户蛋白,促进 SG 成熟或诱导液-固转变,这可能是疾病的基础。我们提出,与构象重排和异质多价相互作用相结合的凝聚可能是 RNP 颗粒组装的一般原则。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4256/7181197/c191e57002a7/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验