Suppr超能文献

用 HD 离子精确检验量子电动力学和测定基本常数。

Precise test of quantum electrodynamics and determination of fundamental constants with HD ions.

机构信息

Institut für Experimentalphysik, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany.

Laboratoire PhLAM CNRS UMR 8523, Université Lille 1, Villeneuve d'Ascq, France.

出版信息

Nature. 2020 May;581(7807):152-158. doi: 10.1038/s41586-020-2261-5. Epub 2020 May 6.

Abstract

Bound three-body quantum systems are important for fundamental physics because they enable tests of quantum electrodynamics theory and provide access to the fundamental constants of atomic physics and to nuclear properties. Molecular hydrogen ions, the simplest molecules, are representative of this class. The metastability of the vibration-rotation levels in their ground electronic states offers the potential for extremely high spectroscopic resolution. Consequently, these systems provide independent access to the Rydberg constant (R), the ratios of the electron mass to the proton mass (m/m) and of the electron mass to the deuteron mass (m/m), the proton and deuteron nuclear radii, and high-level tests of quantum electrodynamics. Conventional spectroscopy techniques for molecular ions have long been unable to provide precision competitive with that of ab initio theory, which has greatly improved in recent years. Here we improve our rotational spectroscopy technique for a sympathetically cooled cluster of molecular ions stored in a linear radiofrequency trap by nearly two orders in accuracy. We measured a set of hyperfine components of the fundamental rotational transition. An evaluation resulted in the most accurate test of a quantum-three-body prediction so far, at the level of 5 × 10, limited by the current uncertainties of the fundamental constants. We determined the value of the fundamental constants combinations [Formula: see text] and m/m with a fractional uncertainty of 2 × 10, in agreement with, but more precise than, current Committee on Data for Science and Technology values. These results also provide strong evidence of the correctness of previous key high-precision measurements and a more than 20-fold stronger bound for a hypothetical fifth force between a proton and a deuteron.

摘要

三体束缚系统对于基础物理学很重要,因为它们能够检验量子电动力学理论,并为获取原子物理学基本常数和核性质提供途径。氢分子离子是最简单的分子,是这类系统的代表。它们基态电子能级的振动-转动能级的亚稳性提供了极高光谱分辨率的潜力。因此,这些系统可以独立获取里德伯常数(R)、电子质量与质子质量的比值(m/m)、电子质量与氘核质量的比值(m/m)、质子和氘核的半径,以及对量子电动力学的高精度检验。长期以来,常规的分子离子光谱技术一直无法提供与近年来大大提高的从头计算理论相媲美的精度。在这里,我们通过将分子离子的 sympathy 冷却簇存储在线性射频陷阱中,将我们的旋转光谱技术的精度提高了近两个数量级。我们测量了基本旋转跃迁的一组超精细分量。评估结果得到了迄今为止最精确的量子三体预测检验,精度达到 5×10,受限于当前基本常数的不确定度。我们确定了基本常数组合 [Formula: see text]和 m/m 的值,其分数不确定度为 2×10,与当前科学技术数据委员会的值一致,但更精确。这些结果还为之前关键高精度测量的正确性提供了强有力的证据,并对质子和氘核之间假设的第五种力施加了 20 多倍的限制。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验