Suppr超能文献

迈向无限维模型中的计算机化高效估计。

Toward computerized efficient estimation in infinite-dimensional models.

作者信息

Carone Marco, Luedtke Alexander R, van der Laan Mark J

机构信息

Department of Biostatistics, University of Washington.

Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center.

出版信息

J Am Stat Assoc. 2019;114(527):1174-1190. doi: 10.1080/01621459.2018.1482752. Epub 2018 Sep 13.

Abstract

Despite the risk of misspecification they are tied to, parametric models continue to be used in statistical practice because they are simple and convenient to use. In particular, efficient estimation procedures in parametric models are easy to describe and implement. Unfortunately, the same cannot be said of semiparametric and nonparametric models. While the latter often reflect the level of available scientific knowledge more appropriately, performing efficient inference in these models is generally challenging. The efficient influence function is a key analytic object from which the construction of asymptotically efficient estimators can potentially be streamlined. However, the theoretical derivation of the efficient influence function requires specialized knowledge and is often a difficult task, even for experts. In this paper, we present a novel representation of the efficient influence function and describe a numerical procedure for approximating its evaluation. The approach generalizes the nonparametric procedures of Frangakis et al. (2015) and Luedtke et al. (2015) to arbitrary models. We present theoretical results to support our proposal, and illustrate the method in the context of several semiparametric problems. The proposed approach is an important step toward automating efficient estimation in general statistical models, thereby rendering more accessible the use of realistic models in statistical analyses.

摘要

尽管参数模型存在设定错误的风险,但它们在统计实践中仍被继续使用,因为它们简单且便于使用。特别是,参数模型中的有效估计程序易于描述和实施。不幸的是,半参数模型和非参数模型并非如此。虽然后者通常能更恰当地反映现有科学知识的水平,但在这些模型中进行有效推断通常具有挑战性。有效影响函数是一个关键的分析对象,从中有可能简化渐近有效估计量的构建。然而,有效影响函数的理论推导需要专业知识,而且即使对于专家来说通常也是一项艰巨的任务。在本文中,我们提出了有效影响函数的一种新颖表示形式,并描述了一种近似其求值的数值程序。该方法将Frangakis等人(2015年)和Luedtke等人(2015年)的非参数程序进行了推广。我们给出了理论结果来支持我们的提议,并在几个半参数问题的背景下说明了该方法。所提出的方法是朝着在一般统计模型中实现有效估计自动化迈出的重要一步,从而使在统计分析中使用现实模型变得更容易。

相似文献

1
Toward computerized efficient estimation in infinite-dimensional models.迈向无限维模型中的计算机化高效估计。
J Am Stat Assoc. 2019;114(527):1174-1190. doi: 10.1080/01621459.2018.1482752. Epub 2018 Sep 13.
2
Collaborative double robust targeted maximum likelihood estimation.协作双稳健靶向最大似然估计
Int J Biostat. 2010 May 17;6(1):Article 17. doi: 10.2202/1557-4679.1181.
10
Nonparametric methods for doubly robust estimation of continuous treatment effects.连续治疗效应双重稳健估计的非参数方法。
J R Stat Soc Series B Stat Methodol. 2017 Sep;79(4):1229-1245. doi: 10.1111/rssb.12212. Epub 2016 Sep 30.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验