Suppr超能文献

迈向无限维模型中的计算机化高效估计。

Toward computerized efficient estimation in infinite-dimensional models.

作者信息

Carone Marco, Luedtke Alexander R, van der Laan Mark J

机构信息

Department of Biostatistics, University of Washington.

Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center.

出版信息

J Am Stat Assoc. 2019;114(527):1174-1190. doi: 10.1080/01621459.2018.1482752. Epub 2018 Sep 13.

Abstract

Despite the risk of misspecification they are tied to, parametric models continue to be used in statistical practice because they are simple and convenient to use. In particular, efficient estimation procedures in parametric models are easy to describe and implement. Unfortunately, the same cannot be said of semiparametric and nonparametric models. While the latter often reflect the level of available scientific knowledge more appropriately, performing efficient inference in these models is generally challenging. The efficient influence function is a key analytic object from which the construction of asymptotically efficient estimators can potentially be streamlined. However, the theoretical derivation of the efficient influence function requires specialized knowledge and is often a difficult task, even for experts. In this paper, we present a novel representation of the efficient influence function and describe a numerical procedure for approximating its evaluation. The approach generalizes the nonparametric procedures of Frangakis et al. (2015) and Luedtke et al. (2015) to arbitrary models. We present theoretical results to support our proposal, and illustrate the method in the context of several semiparametric problems. The proposed approach is an important step toward automating efficient estimation in general statistical models, thereby rendering more accessible the use of realistic models in statistical analyses.

摘要

尽管参数模型存在设定错误的风险,但它们在统计实践中仍被继续使用,因为它们简单且便于使用。特别是,参数模型中的有效估计程序易于描述和实施。不幸的是,半参数模型和非参数模型并非如此。虽然后者通常能更恰当地反映现有科学知识的水平,但在这些模型中进行有效推断通常具有挑战性。有效影响函数是一个关键的分析对象,从中有可能简化渐近有效估计量的构建。然而,有效影响函数的理论推导需要专业知识,而且即使对于专家来说通常也是一项艰巨的任务。在本文中,我们提出了有效影响函数的一种新颖表示形式,并描述了一种近似其求值的数值程序。该方法将Frangakis等人(2015年)和Luedtke等人(2015年)的非参数程序进行了推广。我们给出了理论结果来支持我们的提议,并在几个半参数问题的背景下说明了该方法。所提出的方法是朝着在一般统计模型中实现有效估计自动化迈出的重要一步,从而使在统计分析中使用现实模型变得更容易。

相似文献

1
Toward computerized efficient estimation in infinite-dimensional models.
J Am Stat Assoc. 2019;114(527):1174-1190. doi: 10.1080/01621459.2018.1482752. Epub 2018 Sep 13.
2
Collaborative double robust targeted maximum likelihood estimation.
Int J Biostat. 2010 May 17;6(1):Article 17. doi: 10.2202/1557-4679.1181.
3
Deductive derivation and turing-computerization of semiparametric efficient estimation.
Biometrics. 2015 Dec;71(4):867-74. doi: 10.1111/biom.12362. Epub 2015 Aug 3.
4
7
Universal sieve-based strategies for efficient estimation using machine learning tools.
Bernoulli (Andover). 2021 Nov;27(4):2300-2336. doi: 10.3150/20-BEJ1309. Epub 2021 Aug 24.
9
A generalization of moderated statistics to data adaptive semiparametric estimation in high-dimensional biology.
Stat Methods Med Res. 2023 Mar;32(3):539-554. doi: 10.1177/09622802221146313. Epub 2022 Dec 26.
10
Nonparametric methods for doubly robust estimation of continuous treatment effects.
J R Stat Soc Series B Stat Methodol. 2017 Sep;79(4):1229-1245. doi: 10.1111/rssb.12212. Epub 2016 Sep 30.

引用本文的文献

2
Comment: Models as (deliberate) approximations.
Stat Sci. 2019 Nov;34(4):591-598. doi: 10.1214/19-STS747. Epub 2020 Jan 8.

本文引用的文献

1
Estimation and testing in targeted goup sequential covariate-adjusted randomized clinical trials.
Scand Stat Theory Appl. 2014 Mar;41(1):104-140. doi: 10.1111/sjos.12013. Epub 2013 May 7.
3
Deductive derivation and turing-computerization of semiparametric efficient estimation.
Biometrics. 2015 Dec;71(4):867-74. doi: 10.1111/biom.12362. Epub 2015 Aug 3.
5
Targeted maximum likelihood based causal inference: Part I.
Int J Biostat. 2010;6(2):Article 2. doi: 10.2202/1557-4679.1211.
6
Inconsistency of the MLE for the Joint Distribution of Interval-Censored Survival Times and Continuous Marks.
Scand Stat Theory Appl. 2008 Mar 1;35(1):83-103. doi: 10.1111/j.1467-9469.2007.00568.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验