Suppr超能文献

使用机器学习工具进行高效估计的基于通用筛法的策略。

Universal sieve-based strategies for efficient estimation using machine learning tools.

作者信息

Qiu Hongxiang, Luedtke Alex, Carone Marco

机构信息

Department of Biostatistics, University of Washington, Seattle, WA, USA.

Department of Statistics, University of Washington, Seattle, WA, USA.

出版信息

Bernoulli (Andover). 2021 Nov;27(4):2300-2336. doi: 10.3150/20-BEJ1309. Epub 2021 Aug 24.

Abstract

Suppose that we wish to estimate a finite-dimensional summary of one or more function-valued features of an underlying data-generating mechanism under a nonparametric model. One approach to estimation is by plugging in flexible estimates of these features. Unfortunately, in general, such estimators may not be asymptotically efficient, which often makes these estimators difficult to use as a basis for inference. Though there are several existing methods to construct asymptotically efficient plug-in estimators, each such method either can only be derived using knowledge of efficiency theory or is only valid under stringent smoothness assumptions. Among existing methods, sieve estimators stand out as particularly convenient because efficiency theory is not required in their construction, their tuning parameters can be selected data adaptively, and they are universal in the sense that the same fits lead to efficient plug-in estimators for a rich class of estimands. Inspired by these desirable properties, we propose two novel universal approaches for estimating function-valued features that can be analyzed using sieve estimation theory. Compared to traditional sieve estimators, these approaches are valid under more general conditions on the smoothness of the function-valued features by utilizing flexible estimates that can be obtained, for example, using machine learning.

摘要

假设我们希望在非参数模型下估计潜在数据生成机制的一个或多个函数值特征的有限维汇总。一种估计方法是代入这些特征的灵活估计值。不幸的是,一般来说,这样的估计量可能不是渐近有效的,这通常使得这些估计量难以用作推断的基础。尽管有几种现有的方法来构造渐近有效的代入估计量,但每种这样的方法要么只能利用效率理论的知识推导出来,要么仅在严格的光滑性假设下才有效。在现有方法中,筛估计量特别方便,因为在其构造过程中不需要效率理论,其调优参数可以根据数据自适应选择,并且它们具有通用性,即相同的拟合会为一大类被估计量产生有效的代入估计量。受这些理想特性的启发,我们提出了两种新颖的通用方法来估计函数值特征,这些方法可以使用筛估计理论进行分析。与传统的筛估计量相比,通过利用例如使用机器学习可以获得的灵活估计值,这些方法在函数值特征的光滑性更一般的条件下是有效的。

相似文献

1
Universal sieve-based strategies for efficient estimation using machine learning tools.
Bernoulli (Andover). 2021 Nov;27(4):2300-2336. doi: 10.3150/20-BEJ1309. Epub 2021 Aug 24.
2
Collaborative double robust targeted maximum likelihood estimation.
Int J Biostat. 2010 May 17;6(1):Article 17. doi: 10.2202/1557-4679.1181.
4
Estimating and Testing Vaccine Sieve Effects Using Machine Learning.
J Am Stat Assoc. 2019;114(527):1038-1049. doi: 10.1080/01621459.2018.1529594. Epub 2019 Apr 3.
6
Asymptotic Properties of Neural Network Sieve Estimators.
J Nonparametr Stat. 2023;35(4):839-868. doi: 10.1080/10485252.2023.2209218. Epub 2023 May 13.
7
SEMIPARAMETRIC LATENT-CLASS MODELS FOR MULTIVARIATE LONGITUDINAL AND SURVIVAL DATA.
Ann Stat. 2022 Feb;50(1):487-510. doi: 10.1214/21-aos2117. Epub 2022 Feb 16.
8
Targeted estimation of nuisance parameters to obtain valid statistical inference.
Int J Biostat. 2014;10(1):29-57. doi: 10.1515/ijb-2012-0038.
9
Toward computerized efficient estimation in infinite-dimensional models.
J Am Stat Assoc. 2019;114(527):1174-1190. doi: 10.1080/01621459.2018.1482752. Epub 2018 Sep 13.
10
A Generally Efficient Targeted Minimum Loss Based Estimator based on the Highly Adaptive Lasso.
Int J Biostat. 2017 Oct 12;13(2):/j/ijb.2017.13.issue-2/ijb-2015-0097/ijb-2015-0097.xml. doi: 10.1515/ijb-2015-0097.

引用本文的文献

1
Prediction sets adaptive to unknown covariate shift.
J R Stat Soc Series B Stat Methodol. 2023 Jul 17;85(5):1680-1705. doi: 10.1093/jrsssb/qkad069. eCollection 2023 Nov.

本文引用的文献

1
Efficient estimation of pathwise differentiable target parameters with the undersmoothed highly adaptive lasso.
Int J Biostat. 2022 Jul 15;19(1):261-289. doi: 10.1515/ijb-2019-0092. eCollection 2023 May 1.
2
Nonparametric variable importance assessment using machine learning techniques.
Biometrics. 2021 Mar;77(1):9-22. doi: 10.1111/biom.13392. Epub 2020 Dec 8.
3
The Highly Adaptive Lasso Estimator.
Proc Int Conf Data Sci Adv Anal. 2016;2016:689-696. doi: 10.1109/DSAA.2016.93. Epub 2016 Dec 26.
4
A Generally Efficient Targeted Minimum Loss Based Estimator based on the Highly Adaptive Lasso.
Int J Biostat. 2017 Oct 12;13(2):/j/ijb.2017.13.issue-2/ijb-2015-0097/ijb-2015-0097.xml. doi: 10.1515/ijb-2015-0097.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验