Suppr超能文献

自由活动大鼠癫痫发作检测的局部场电位在线分析

Online analysis of local field potentials for seizure detection in freely moving rats.

作者信息

Zare Meysam, Nazari Milad, Shojaei Amir, Raoufy Mohammad Reza, Mirnajafi-Zadeh Javad

机构信息

Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.

Department of Technology, Electrical Engineering, Sharif University, Tehran.

出版信息

Iran J Basic Med Sci. 2020 Feb;23(2):173-177. doi: 10.22038/IJBMS.2019.38722.9183.

Abstract

OBJECTIVES

Seizure detection during online recording of electrophysiological parameters is very important in epileptic patients. In the present study, online analysis of field potential recordings was used for detecting spontaneous seizures in epileptic animals.

MATERIALS AND METHODS

Epilepsy was induced in rats by pilocarpine injection. During the chronic period of the pilocarpine model, local field potential (LFP) recording was run for at least 24 hr. At the same time, video monitoring of the animals was done to determine the real time of seizure occurrence. Both power and sample entropy of LFP were used for online analysis.

RESULTS

Obtained results showed that changes in LFP power are a better index for seizure detection. In addition, when we used one hundred consecutive epochs (each epoch equals 10 ms) of LFP for data analysis, the best detection was achieved.

CONCLUSION

It may be suggested that power is a suitable parameter for online analysis of LFP in order to detect the spontaneous seizures correctly.

摘要

目的

在癫痫患者的电生理参数在线记录过程中,癫痫发作检测非常重要。在本研究中,利用场电位记录的在线分析来检测癫痫动物的自发性癫痫发作。

材料与方法

通过注射毛果芸香碱诱导大鼠癫痫发作。在毛果芸香碱模型的慢性期,进行至少24小时的局部场电位(LFP)记录。同时,对动物进行视频监测以确定癫痫发作的实际时间。LFP的功率和样本熵均用于在线分析。

结果

所得结果表明,LFP功率变化是癫痫发作检测的更好指标。此外,当我们使用连续100个LFP时段(每个时段等于10毫秒)进行数据分析时,实现了最佳检测效果。

结论

可以认为,功率是LFP在线分析的合适参数,以便正确检测自发性癫痫发作。

相似文献

2
Neuronal synchrony and the transition to spontaneous seizures.神经元同步与自发性癫痫发作的转变。
Exp Neurol. 2013 Oct;248:72-84. doi: 10.1016/j.expneurol.2013.05.004. Epub 2013 May 23.
6
Memristive Neural Networks for Predicting Seizure Activity.用于预测癫痫发作活动的忆阻神经网络
Sovrem Tekhnologii Med. 2023;15(4):30-38. doi: 10.17691/stm2023.15.4.03. Epub 2023 Jul 28.

本文引用的文献

4
Performance-power consumption tradeoff in wearable epilepsy monitoring systems.可穿戴式癫痫监测系统中的性能-功耗权衡
IEEE J Biomed Health Inform. 2015 May;19(3):1019-1028. doi: 10.1109/JBHI.2014.2342501. Epub 2014 Jul 23.
5
Electrical brain stimulation for epilepsy.电刺激治疗癫痫。
Nat Rev Neurol. 2014 May;10(5):261-70. doi: 10.1038/nrneurol.2014.59. Epub 2014 Apr 8.
6
A novel low-power-implantable epileptic seizure-onset detector.一种新型低功耗可植入癫痫发作起始检测器。
IEEE Trans Biomed Circuits Syst. 2011 Dec;5(6):568-78. doi: 10.1109/TBCAS.2011.2157153.
9
How local is the local field potential?局部场电位有多局部?
Neuron. 2011 Dec 8;72(5):847-58. doi: 10.1016/j.neuron.2011.09.029.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验