Suppr超能文献

在镁合金支架材料上逐层沉积生物活性层以提高耐腐蚀性和生物相容性。

Layer-by-layer deposition of bioactive layers on magnesium alloy stent materials to improve corrosion resistance and biocompatibility.

作者信息

Gao Fan, Hu Youdong, Li Guicai, Liu Sen, Quan Li, Yang Zhongmei, Wei Yanchun, Pan Changjiang

机构信息

Faculty of Mechanical and Material Engineering, Huaiyin Institute of Technology, Huai'an 223003, China.

Department of Geriatrics, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an 223003, China.

出版信息

Bioact Mater. 2020 May 7;5(3):611-623. doi: 10.1016/j.bioactmat.2020.04.016. eCollection 2020 Sep.

Abstract

Magnesium alloy is considered as one of the ideal cardiovascular stent materials owing to its good mechanical properties and biodegradability. However, the rapid degradation rate and the insufficient biocompatibility restrict its clinical applications. In this study, the magnesium alloy (AZ31B) was modified by combining the surface chemical treatment and in-situ self-assembly of 16-phosphonyl-hexadecanoic acid, followed by the immobilization of chitosan-functionalized graphene oxide (GOCS). Heparin (Hep) and GOCS were alternatively immobilized on the GOCS-modified surface through layer by layer (LBL) to construct the GOCS/Hep bioactive multilayer coating, and the corrosion resistance and biocompatibility were extensively explored. The results showed that the GOCS/Hep bioactive multilayer coating can endow magnesium alloys with an excellent corrosion resistance. The GOCS/Hep multilayer coating can significantly reduce the hemolysis rate and the platelet adhesion and activation, resulting in an excellent blood compatibility. In addition, the multilayer coating can not only enhance the adhesion and proliferation of the endothelial cells, but also promote the vascular endothelial growth factor (VEGF) and nitric oxide (NO) expression of the attached endothelial cells on the surfaces. Therefore, the method of the present study can be used to simultaneously control the corrosion resistance and improve the biocompatibility of the magnesium alloys, which is expected to promote the application of magnesium alloys in biomaterials or medical devices, especially cardiovascular stent.

摘要

镁合金因其良好的力学性能和生物可降解性被认为是理想的心血管支架材料之一。然而,其快速的降解速率和不足的生物相容性限制了它的临床应用。在本研究中,通过表面化学处理与16-膦酰基十六烷酸的原位自组装相结合对镁合金(AZ31B)进行改性,随后固定壳聚糖功能化氧化石墨烯(GOCS)。肝素(Hep)和GOCS通过层层(LBL)交替固定在GOCS改性表面上,构建GOCS/Hep生物活性多层涂层,并对其耐腐蚀性和生物相容性进行了广泛研究。结果表明,GOCS/Hep生物活性多层涂层可赋予镁合金优异的耐腐蚀性。GOCS/Hep多层涂层可显著降低溶血率以及血小板的黏附与活化,从而具有优异的血液相容性。此外,多层涂层不仅可增强内皮细胞的黏附与增殖,还可促进附着在表面的内皮细胞的血管内皮生长因子(VEGF)和一氧化氮(NO)表达。因此,本研究方法可用于同时控制镁合金的耐腐蚀性并改善其生物相容性,有望推动镁合金在生物材料或医疗器械,尤其是心血管支架中的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验