Suppr超能文献

四种乳腺癌亚型中特定微小RNA-信使核糖核酸调控对的鉴定

Identification of specific microRNA-messenger RNA regulation pairs in four subtypes of breast cancer.

作者信息

Guo Ling, Zhang Aihua, Xiong Jie

机构信息

College of Electrical Engineering, Northwest University for Nationalities, Lanzhou, 730030, People's Republic of China.

College of Electrical and Information Engineering, Lanzhou University of Technology, Lanzhou, 730050, People's Republic of China.

出版信息

IET Syst Biol. 2020 Jun;14(3):120-126. doi: 10.1049/iet-syb.2019.0086.

Abstract

Four subtypes of breast cancer, luminal A, luminal B, basal-like, human epidermal growth factor receptor-enriched, have been identified based on gene expression profiles of human tumours. The goal of this study is to find whether the same groups' genes would exhibit different networks among the four subtypes. Differential expressed genes between each of the four subtypes and the normal samples were identified. The overlaps between the four groups of differentially expressed genes were used to construct regulations networks for each of the four subtypes. Univariate and multivariate Cox regressions were employed to test the genes in the four regulation networks. This study demonstrated that the common genes in four subtypes showed different regulation. Also, the hsa-miR-182 and decorin pair performs different functions among the four subtypes of breast cancer. The result indicated that heterogeneity of breast cancer is not only reflected in the different expression patterns among different genes, but also in the different regulatory networks of the same group of genes.

摘要

基于人类肿瘤的基因表达谱,已鉴定出四种乳腺癌亚型,即腔面A型、腔面B型、基底样型、人表皮生长因子受体富集型。本研究的目的是探究同一组基因在这四种亚型中是否会呈现出不同的网络。确定了四种亚型中的每一种与正常样本之间的差异表达基因。利用四组差异表达基因之间的重叠部分构建了四种亚型各自的调控网络。采用单变量和多变量Cox回归对四个调控网络中的基因进行检验。本研究表明,四种亚型中的共同基因表现出不同的调控。此外,hsa-miR-182和核心蛋白聚糖对在四种乳腺癌亚型中发挥不同的功能。结果表明,乳腺癌的异质性不仅体现在不同基因之间不同的表达模式上,还体现在同一组基因不同的调控网络中。

相似文献

1
Identification of specific microRNA-messenger RNA regulation pairs in four subtypes of breast cancer.
IET Syst Biol. 2020 Jun;14(3):120-126. doi: 10.1049/iet-syb.2019.0086.
3
MicroRNA expression and gene regulation drive breast cancer progression and metastasis in PyMT mice.
Breast Cancer Res. 2016 Jul 22;18(1):75. doi: 10.1186/s13058-016-0735-z.
4
MicroRNA profiles of healthy basal and luminal mammary epithelial cells are distinct and reflected in different breast cancer subtypes.
Breast Cancer Res Treat. 2011 Dec;130(3):735-45. doi: 10.1007/s10549-010-1303-3. Epub 2011 Mar 17.
5
Dysregulation of microRNA expression drives aberrant DNA hypermethylation in basal-like breast cancer.
Int J Oncol. 2014 Feb;44(2):563-72. doi: 10.3892/ijo.2013.2197. Epub 2013 Nov 29.
6
Influence of DNA copy number and mRNA levels on the expression of breast cancer related proteins.
Mol Oncol. 2013 Jun;7(3):704-18. doi: 10.1016/j.molonc.2013.02.018. Epub 2013 Mar 19.
8
Circular RNA hsa_circ_0000376 Participates in Tumorigenesis of Breast Cancer by Targeting miR-1285-3p.
Technol Cancer Res Treat. 2020 Jan-Dec;19:1533033820928471. doi: 10.1177/1533033820928471.

引用本文的文献

1
A Deep Differential Analysis in Four Subtypes of Breast Cancer Based on Regulations of miRNA-mRNA.
IET Syst Biol. 2025 Jan-Dec;19(1):e70020. doi: 10.1049/syb2.70020.
3
Role of Exosomal miR-223 in Chronic Skeletal Muscle Inflammation.
Orthop Surg. 2022 Apr;14(4):644-651. doi: 10.1111/os.13232. Epub 2022 Mar 16.

本文引用的文献

2
Identification of gene signatures from RNA-seq data using Pareto-optimal cluster algorithm.
BMC Syst Biol. 2018 Dec 21;12(Suppl 8):126. doi: 10.1186/s12918-018-0650-2.
3
Identification of the copy number variant biomarkers for breast cancer subtypes.
Mol Genet Genomics. 2019 Feb;294(1):95-110. doi: 10.1007/s00438-018-1488-4. Epub 2018 Sep 10.
4
MDHGI: Matrix Decomposition and Heterogeneous Graph Inference for miRNA-disease association prediction.
PLoS Comput Biol. 2018 Aug 24;14(8):e1006418. doi: 10.1371/journal.pcbi.1006418. eCollection 2018 Aug.
5
Predicting miRNA-disease association based on inductive matrix completion.
Bioinformatics. 2018 Dec 15;34(24):4256-4265. doi: 10.1093/bioinformatics/bty503.
7
Systematical analysis of lncRNA-mRNA competing endogenous RNA network in breast cancer subtypes.
Breast Cancer Res Treat. 2018 Jun;169(2):267-275. doi: 10.1007/s10549-018-4678-1. Epub 2018 Feb 1.
8
lncRNA Gene Signatures for Prediction of Breast Cancer Intrinsic Subtypes and Prognosis.
Genes (Basel). 2018 Jan 26;9(2):65. doi: 10.3390/genes9020065.
10
LRSSLMDA: Laplacian Regularized Sparse Subspace Learning for MiRNA-Disease Association prediction.
PLoS Comput Biol. 2017 Dec 18;13(12):e1005912. doi: 10.1371/journal.pcbi.1005912. eCollection 2017 Dec.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验