Department of Medicine, Baylor College of Medicine, Houston, Texas, USA.
The Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, Texas, USA.
Int J Cancer. 2020 Nov 1;147(9):2621-2633. doi: 10.1002/ijc.33053. Epub 2020 Jun 4.
EGFR is an oncogene with a high frequency of activating mutations in nonsmall cell lung cancer (NSCLC). EGFR inhibitors have been FDA-approved for NSCLC and have shown efficacy in patients with certain EGFR mutations. However, only 9% to 26% of these patients achieve objective responses. In our study, we developed an EGFR gene signature based on The Cancer Genome Atlas (TCGA) RNA-seq data of lung adenocarcinoma (LUAD) to direct the preselection of patients for more effective EGFR-targeted therapy. This signature infers baseline EGFR signaling pathway activity (denoted as EGFR score) in tumor samples, which is associated with tumor sensitivity to EGFR inhibitors and other tyrosine kinase inhibitors (TKIs). EGFR score predicted sensitivity of lung cancer cell lines to Erlotinib, Gefitinib and Sorafenib. Importantly, EGFR score calculated from pretreated samples was associated with patient response to Gefitinib and Sorafenib in lung cancer. Additionally, integration of the EGFR signature with TCGA LUAD data showed that it accurately predicted functional effects of different somatic EGFR mutations, and identified other mutations affecting EGFR pathway activity. Finally, using cancer cell line and clinical trial data, the EGFR score was associated with patient response to TKIs in liver cancer and other cancer types. The EGFR signature provides a useful biomarker that can expand the application of EGFR inhibitors or other TKIs and improve their treatment efficacy through patient stratification.
表皮生长因子受体(EGFR)是一种癌基因,在非小细胞肺癌(NSCLC)中高频出现激活突变。EGFR 抑制剂已获美国食品药品监督管理局(FDA)批准用于 NSCLC,并已在具有特定 EGFR 突变的患者中显示出疗效。然而,只有 9%至 26%的患者获得客观缓解。在我们的研究中,我们基于肺癌腺癌(LUAD)的癌症基因组图谱(TCGA)RNA-seq 数据开发了一个 EGFR 基因特征,以指导对更有效的 EGFR 靶向治疗进行患者的预先选择。该特征推断肿瘤样本中 EGFR 信号通路的基线活性(表示为 EGFR 评分),这与肿瘤对 EGFR 抑制剂和其他酪氨酸激酶抑制剂(TKI)的敏感性相关。EGFR 评分预测了肺癌细胞系对厄洛替尼、吉非替尼和索拉非尼的敏感性。重要的是,从预处理样本中计算出的 EGFR 评分与患者对吉非替尼和索拉非尼的反应相关。此外,EGFR 特征与 TCGA LUAD 数据的整合表明,它准确预测了不同体细胞 EGFR 突变的功能效应,并确定了其他影响 EGFR 通路活性的突变。最后,使用癌症细胞系和临床试验数据,EGFR 评分与肝癌和其他癌症类型中患者对 TKI 的反应相关。EGFR 特征提供了一个有用的生物标志物,可以通过患者分层来扩大 EGFR 抑制剂或其他 TKI 的应用,并提高其治疗效果。
Am Soc Clin Oncol Educ Book. 2014
Cancers (Basel). 2022-9-9
Mol Oncol. 2022-11
Cancers (Basel). 2021-9-22
Mol Cancer. 2018-2-19
Pharmacogenet Genomics. 2017-6
Front Pharmacol. 2016-10-26
Endocr Relat Cancer. 2016-4