Suppr超能文献

生长素在 PtoDC3000 病程中调节植物防御和细菌毒力基因表达的双重作用。

Dual Role of Auxin in Regulating Plant Defense and Bacterial Virulence Gene Expression During PtoDC3000 Pathogenesis.

机构信息

Department of Biology, Washington University, St. Louis, MO, U.S.A.

Division of Biological Sciences, Section of Cell & Developmental Biology, University California San Diego, San Diego, CA, U.S.A.

出版信息

Mol Plant Microbe Interact. 2020 Aug;33(8):1059-1071. doi: 10.1094/MPMI-02-20-0047-R. Epub 2020 Jun 29.

Abstract

Modification of host hormone biology is a common strategy used by plant pathogens to promote disease. For example, the bacterial pathogen strain DC3000 (PtoDC3000) produces the plant hormone auxin (indole-3-acetic acid [IAA]) to promote PtoDC3000 growth in plant tissue. Previous studies suggest that auxin may promote PtoDC3000 pathogenesis through multiple mechanisms, including both suppression of salicylic acid (SA)-mediated host defenses and via an unknown mechanism that appears to be independent of SA. To test if host auxin signaling is important during pathogenesis, we took advantage of lines impaired in either auxin signaling or perception. We found that disruption of auxin signaling in plants expressing an inducible dominant mutation resulted in decreased bacterial growth and that this phenotype was suppressed by introducing the mutation, which impairs SA synthesis. Thus, host auxin signaling is required for normal susceptibility to PtoDC3000 and is involved in suppressing SA-mediated defenses. Unexpectedly, quadruple-mutant plants lacking four of the six known auxin coreceptors that exhibit decreased auxin perception, supported increased levels of bacterial growth. This mutant exhibited elevated IAA levels and reduced SA-mediated defenses, providing additional evidence that auxin promotes disease by suppressing host defense. We also investigated the hypothesis that IAA promotes PtoDC3000 virulence through a direct effect on the pathogen and found that IAA modulates expression of virulence genes, both in culture and in planta. Thus, in addition to suppressing host defenses, IAA acts as a microbial signaling molecule that regulates bacterial virulence gene expression.

摘要

宿主激素生物学的修饰是植物病原体用来促进疾病的常见策略。例如,细菌病原体菌株 DC3000(PtoDC3000)产生植物激素生长素(吲哚-3-乙酸[IAA]),以促进 PtoDC3000 在植物组织中的生长。先前的研究表明,生长素可能通过多种机制促进 PtoDC3000 的发病机制,包括抑制水杨酸(SA)介导的宿主防御和通过一种似乎独立于 SA 的未知机制。为了测试宿主生长素信号传导在发病机制中的重要性,我们利用在生长素信号传导或感知中受损的 品系。我们发现,在表达可诱导显性 突变体的植物中破坏生长素信号传导会导致细菌生长减少,并且该表型被引入 突变体抑制,该突变体抑制 SA 合成。因此,宿主生长素信号传导对于对 PtoDC3000 的正常易感性是必需的,并且参与抑制 SA 介导的防御。出乎意料的是,缺乏六个已知生长素核心受体中的四个的四倍体突变体植物,表现出生长素感知降低,支持了更高水平的细菌生长。该突变体表现出升高的 IAA 水平和降低的 SA 介导的防御,提供了生长素通过抑制宿主防御促进疾病的额外证据。我们还研究了 IAA 通过直接作用于病原体促进 PtoDC3000 毒力的假设,并发现 IAA 调节毒力基因的表达,无论是在培养物中还是在植物体内。因此,除了抑制宿主防御外,IAA 还作为一种微生物信号分子,调节细菌毒力基因的表达。

相似文献

1
Dual Role of Auxin in Regulating Plant Defense and Bacterial Virulence Gene Expression During PtoDC3000 Pathogenesis.
Mol Plant Microbe Interact. 2020 Aug;33(8):1059-1071. doi: 10.1094/MPMI-02-20-0047-R. Epub 2020 Jun 29.
3
Indole-3-acetaldehyde dehydrogenase-dependent auxin synthesis contributes to virulence of Pseudomonas syringae strain DC3000.
PLoS Pathog. 2018 Jan 2;14(1):e1006811. doi: 10.1371/journal.ppat.1006811. eCollection 2018 Jan.
4
Identification of Indole-3-Acetic Acid-Regulated Genes in pv. tomato Strain DC3000.
J Bacteriol. 2022 Jan 18;204(1):e0038021. doi: 10.1128/JB.00380-21. Epub 2021 Oct 18.
5
AefR, a TetR Family Transcriptional Repressor, Regulates Several Auxin Responses in Strain DC3000.
Mol Plant Microbe Interact. 2024 Feb;37(2):155-165. doi: 10.1094/MPMI-10-23-0170-R. Epub 2024 Feb 26.
6
Dual regulation role of GH3.5 in salicylic acid and auxin signaling during Arabidopsis-Pseudomonas syringae interaction.
Plant Physiol. 2007 Oct;145(2):450-64. doi: 10.1104/pp.107.106021. Epub 2007 Aug 17.
8
The conjugated auxin indole-3-acetic acid-aspartic acid promotes plant disease development.
Plant Cell. 2012 Feb;24(2):762-77. doi: 10.1105/tpc.111.095190. Epub 2012 Feb 28.

引用本文的文献

1
Ascaroside#18 Promotes Plant Defence by Repressing Auxin Signalling.
Physiol Plant. 2025 Jul-Aug;177(4):e70386. doi: 10.1111/ppl.70386.
5
Investigating the biosynthesis and roles of the auxin phenylacetic acid during - pathogenesis.
Front Plant Sci. 2024 Jul 18;15:1408833. doi: 10.3389/fpls.2024.1408833. eCollection 2024.
7
Salicylic and Jasmonic Acid Synergism during Black Knot Disease Progression in Plums.
Plants (Basel). 2024 Jan 18;13(2):292. doi: 10.3390/plants13020292.
8
Indole-3-acetic acid as a cross-talking molecule in algal-bacterial interactions and a potential driving force in algal bloom formation.
Front Microbiol. 2023 Oct 20;14:1236925. doi: 10.3389/fmicb.2023.1236925. eCollection 2023.
9
Biosynthetic Pathways and Functions of Indole-3-Acetic Acid in Microorganisms.
Microorganisms. 2023 Aug 12;11(8):2077. doi: 10.3390/microorganisms11082077.
10
Entomopathogenic Fungus-Related Priming Defense Mechanisms in Cucurbits Impact Spodoptera littoralis (Boisduval) Fitness.
Appl Environ Microbiol. 2023 Aug 30;89(8):e0094023. doi: 10.1128/aem.00940-23. Epub 2023 Jul 13.

本文引用的文献

3
Elucidating Bacterial Gene Functions in the Plant Microbiome.
Cell Host Microbe. 2018 Oct 10;24(4):475-485. doi: 10.1016/j.chom.2018.09.005.
4
Gene Expression in the Indole-3-Acetic Acid-Degrading Soil Bacterium Enterobacter soli LF7.
Appl Environ Microbiol. 2018 Sep 17;84(19). doi: 10.1128/AEM.01057-18. Print 2018 Oct 1.
5
Microbial interactions within the plant holobiont.
Microbiome. 2018 Mar 27;6(1):58. doi: 10.1186/s40168-018-0445-0.
6
Transcriptome landscape of a bacterial pathogen under plant immunity.
Proc Natl Acad Sci U S A. 2018 Mar 27;115(13):E3055-E3064. doi: 10.1073/pnas.1800529115. Epub 2018 Mar 12.
7
Pseudomonas syringae: what it takes to be a pathogen.
Nat Rev Microbiol. 2018 May;16(5):316-328. doi: 10.1038/nrmicro.2018.17. Epub 2018 Feb 26.
8
Validation of RT-qPCR Approaches to Monitor Pseudomonas syringae Gene Expression During Infection and Exposure to Pattern-Triggered Immunity.
Mol Plant Microbe Interact. 2018 Apr;31(4):410-419. doi: 10.1094/MPMI-11-17-0270-TA. Epub 2018 Feb 13.
9
Indole-3-acetaldehyde dehydrogenase-dependent auxin synthesis contributes to virulence of Pseudomonas syringae strain DC3000.
PLoS Pathog. 2018 Jan 2;14(1):e1006811. doi: 10.1371/journal.ppat.1006811. eCollection 2018 Jan.
10
The roles of auxin during interactions between bacterial plant pathogens and their hosts.
J Exp Bot. 2018 Jan 4;69(2):245-254. doi: 10.1093/jxb/erx447.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验