Weituschat Lukas Max, Dickmann Walter, Guimbao Joaquín, Ramos Daniel, Kroker Stefanie, Postigo Pablo Aitor
Instituto de Micro y Nanotecnología, IMN-CNM, CSIC (CEI UAM+CSIC) Isaac Newton, 8, Tres Cantos, E-28760 Madrid, Spain.
Physikalisch-Technische Bundesanstalt, Bundesallee 100, D-38116 Braunschweig, Germany.
Nanomaterials (Basel). 2020 May 12;10(5):934. doi: 10.3390/nano10050934.
Staying in control of delicate processes in the evermore emerging field of micro, nano and quantum-technologies requires suitable devices to measure temperature and temperature flows with high thermal and spatial resolution. In this work, we design optical microring resonators (ORRs) made of different materials (silicon, diamond and gallium nitride) and simulate their temperature behavior using several finite-element methods. We predict the resonance frequencies of the designed devices and their temperature-induced shift (16.8 pm K for diamond, 68.2 pm K for silicon and 30.4 pm K for GaN). In addition, the influence of two-photon-absorption (TPA) and the associated self-heating on the accuracy of the temperature measurement is analysed. The results show that owing to the absence of intrinsic TPA-processes self-heating at resonance is less critical in diamond and GaN than in silicon, with the threshold intensity I th = α / β , α and β being the linear and quadratic absorption coefficients, respectively.
在不断涌现的微纳和量子技术领域中,要控制好精细的过程,需要合适的设备来以高热分辨率和空间分辨率测量温度及温度流。在这项工作中,我们设计了由不同材料(硅、金刚石和氮化镓)制成的光学微环谐振器(ORR),并使用几种有限元方法模拟它们的温度行为。我们预测了所设计器件的共振频率及其温度引起的偏移(金刚石为16.8 pm/K,硅为68.2 pm/K,氮化镓为30.4 pm/K)。此外,还分析了双光子吸收(TPA)及其相关的自热对温度测量精度的影响。结果表明,由于金刚石和氮化镓不存在固有TPA过程,共振时的自热对其温度测量精度的影响不如硅严重,其阈值强度Ith = α / β,其中α和β分别为线性和二次吸收系数。