Suppr超能文献

利用TiO的模板化原子层沉积在金刚石膜上制备的高纳米光子谐振器

High- Nanophotonic Resonators on Diamond Membranes using Templated Atomic Layer Deposition of TiO.

作者信息

Butcher Amy, Guo Xinghan, Shreiner Robert, Delegan Nazar, Hao Kai, Duda Peter J, Awschalom David D, Heremans F Joseph, High Alexander A

机构信息

Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States.

Department of Physics, University of Chicago, Chicago, Illinois 60637, United States.

出版信息

Nano Lett. 2020 Jun 10;20(6):4603-4609. doi: 10.1021/acs.nanolett.0c01467. Epub 2020 May 28.

Abstract

Integrating solid-state quantum emitters with nanophotonic resonators is essential for efficient spin-photon interfacing and optical networking applications. While diamond color centers have proven to be excellent candidates for emerging quantum technologies, their integration with optical resonators remains challenging. Conventional approaches based on etching resonators into diamond often negatively impact color center performance and offer low device yield. Here, we developed an integrated photonics platform based on templated atomic layer deposition of TiO on diamond membranes. Our fabrication method yields high-performance nanophotonic devices while avoiding etching wavelength-scale features into diamond. Moreover, this technique generates highly reproducible optical resonances and can be iterated on individual diamond samples, a unique processing advantage. Our approach is suitable for a broad range of both wavelengths and substrates and can enable high-cooperativity interfacing between cavity photons and coherent defects in diamond or silicon carbide, rare earth ions, or other material systems.

摘要

将固态量子发射器与纳米光子谐振器集成对于高效的自旋-光子接口和光网络应用至关重要。虽然金刚石色心已被证明是新兴量子技术的优秀候选者,但其与光学谐振器的集成仍然具有挑战性。基于在金刚石中蚀刻谐振器的传统方法往往会对色心性能产生负面影响,并且器件良率较低。在此,我们开发了一种基于在金刚石膜上进行模板化原子层沉积TiO的集成光子学平台。我们的制造方法能够产生高性能的纳米光子器件,同时避免在金刚石中蚀刻波长尺度的特征。此外,该技术能产生高度可重复的光学共振,并且可以在单个金刚石样品上反复进行,这是一种独特的加工优势。我们的方法适用于广泛的波长和衬底,并且能够实现腔光子与金刚石或碳化硅中的相干缺陷、稀土离子或其他材料系统之间的高协同性接口。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验