Cellular Immunology Laboratory, Biomedical Research Foundation of the Academy of Athens, 115 27 Athens, Greece.
Division of Immunobiology, Biomedical Research Foundation of the Academy of Athens, 115 27 Athens, Greece.
Proc Natl Acad Sci U S A. 2020 Jun 2;117(22):12269-12280. doi: 10.1073/pnas.1918196117. Epub 2020 May 14.
In multiple sclerosis (MS), Th17 cells are critical drivers of autoimmune central nervous system (CNS) inflammation and demyelination. Th17 cells exhibit functional heterogeneity fostering both pathogenic and nonpathogenic, tissue-protective functions. Still, the factors that control Th17 pathogenicity remain incompletely defined. Here, using experimental autoimmune encephalomyelitis, an established mouse MS model, we report that therapeutic administration of activin-A ameliorates disease severity and alleviates CNS immunopathology and demyelination, associated with decreased activation of Th17 cells. In fact, activin-A signaling through activin-like kinase-4 receptor represses pathogenic transcriptional programs in Th17-polarized cells, while it enhances antiinflammatory gene modules. Whole-genome profiling and in vivo functional studies revealed that activation of the ATP-depleting CD39 and CD73 ectonucleotidases is essential for activin-A-induced suppression of the pathogenic signature and the encephalitogenic functions of Th17 cells. Mechanistically, the aryl hydrocarbon receptor, along with STAT3 and c-Maf, are recruited to promoter elements on and (encoding CD39 and CD73, respectively) and other antiinflammatory genes, and control their expression in Th17 cells in response to activin-A. Notably, we show that activin-A negatively regulates the metabolic sensor, hypoxia-inducible factor-1α, and key inflammatory proteins linked to pathogenic Th17 cell states. Of translational relevance, we demonstrate that activin-A is induced in the CNS of individuals with MS and restrains human Th17 cell responses. These findings uncover activin-A as a critical controller of Th17 cell pathogenicity that can be targeted for the suppression of autoimmune CNS inflammation.
在多发性硬化症(MS)中,Th17 细胞是自身免疫性中枢神经系统(CNS)炎症和脱髓鞘的关键驱动因素。Th17 细胞表现出功能异质性,促进了致病性和非致病性、组织保护性功能。然而,控制 Th17 致病性的因素仍不完全明确。在这里,我们使用实验性自身免疫性脑脊髓炎,一种已建立的小鼠 MS 模型,报告说激活素-A 的治疗给药可改善疾病严重程度并减轻 CNS 免疫病理学和脱髓鞘,与 Th17 细胞的活化减少相关。事实上,激活素-A 通过激活素样激酶 4 受体信号转导抑制 Th17 极化细胞中的致病性转录程序,同时增强抗炎基因模块。全基因组分析和体内功能研究表明,ATP 耗竭型 CD39 和 CD73 核苷酸酶的激活对于激活素-A 诱导的抑制致病性特征和 Th17 细胞的致脑炎功能至关重要。从机制上讲,芳香烃受体与 STAT3 和 c-Maf 一起被募集到 和 (分别编码 CD39 和 CD73)和其他抗炎基因的启动子元件上,并控制它们在 Th17 细胞中的表达以响应激活素-A。值得注意的是,我们表明激活素-A 负调节代谢传感器缺氧诱导因子-1α 和与致病性 Th17 细胞状态相关的关键炎症蛋白。具有转化相关性的是,我们证明激活素-A 在多发性硬化症患者的中枢神经系统中被诱导,并抑制人类 Th17 细胞反应。这些发现揭示了激活素-A 作为 Th17 细胞致病性的关键控制器,可作为抑制自身免疫性中枢神经系统炎症的靶点。