Zargar Amin, Lal Ravi, Valencia Luis, Wang Jessica, Backman Tyler William H, Cruz-Morales Pablo, Kothari Ankita, Werts Miranda, Wong Andrew R, Bailey Constance B, Loubat Arthur, Liu Yuzhong, Chen Yan, Chang Samantha, Benites Veronica T, Hernández Amanda C, Barajas Jesus F, Thompson Mitchell G, Barcelos Carolina, Anayah Rasha, Martin Hector Garcia, Mukhopadhyay Aindrila, Petzold Christopher J, Baidoo Edward E K, Katz Leonard, Keasling Jay D
Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, California 94608, United States.
Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94710, United States.
J Am Chem Soc. 2020 Jun 3;142(22):9896-9901. doi: 10.1021/jacs.0c02549. Epub 2020 May 18.
Polyketide synthase (PKS) engineering is an attractive method to generate new molecules such as commodity, fine and specialty chemicals. A significant challenge is re-engineering a partially reductive PKS module to produce a saturated β-carbon through a reductive loop (RL) exchange. In this work, we sought to establish that chemoinformatics, a field traditionally used in drug discovery, offers a viable strategy for RL exchanges. We first introduced a set of donor RLs of diverse genetic origin and chemical substrates into the first extension module of the lipomycin PKS (LipPKS1). Product titers of these engineered unimodular PKSs correlated with chemical structure similarity between the substrate of the donor RLs and recipient LipPKS1, reaching a titer of 165 mg/L of short-chain fatty acids produced by the host J1074. Expanding this method to larger intermediates that require bimodular communication, we introduced RLs of divergent chemosimilarity into LipPKS2 and determined triketide lactone production. Collectively, we observed a statistically significant correlation between atom pair chemosimilarity and production, establishing a new chemoinformatic method that may aid in the engineering of PKSs to produce desired, unnatural products.
聚酮合酶(PKS)工程是一种用于生成新分子(如大宗商品、精细化学品和特种化学品)的有吸引力的方法。一个重大挑战是对部分还原型PKS模块进行重新工程设计,以通过还原环(RL)交换产生饱和β-碳。在这项工作中,我们试图证明化学信息学(一个传统上用于药物发现的领域)为RL交换提供了一种可行的策略。我们首先将一组具有不同遗传起源和化学底物的供体RL引入到脂霉素PKS(LipPKS1)的第一个延伸模块中。这些工程化单模块PKS的产物滴度与供体RL底物和受体LipPKS1之间的化学结构相似性相关,宿主J1074产生的短链脂肪酸滴度达到165 mg/L。将该方法扩展到需要双模块通信的更大中间体,我们将具有不同化学相似性的RL引入LipPKS2并确定三酮内酯的产量。总体而言,我们观察到原子对化学相似性与产量之间存在统计学上的显著相关性,建立了一种新的化学信息学方法,该方法可能有助于PKS工程设计以生产所需的非天然产物。