Suppr超能文献

工程化模块化聚酮合酶的底物特异性,用于安装连续的非天然延伸单元。

Engineering the Substrate Specificity of a Modular Polyketide Synthase for Installation of Consecutive Non-Natural Extender Units.

机构信息

Department of Chemistry , NC State University , Raleigh , North Carolina 27695 , United States.

Comparative Medicine Institute , NC State University , Raleigh , North Carolina 27695 , United States.

出版信息

J Am Chem Soc. 2019 Feb 6;141(5):1961-1969. doi: 10.1021/jacs.8b10521. Epub 2019 Jan 24.

Abstract

There is significant interest in diversifying the structures of polyketides to create new analogues of these bioactive molecules. This has traditionally been done by focusing on engineering the acyltransferase (AT) domains of polyketide synthases (PKSs) responsible for the incorporation of malonyl-CoA extender units. Non-natural extender units have been utilized by engineered PKSs previously; however, most of the work to date has been accomplished with ATs that are either naturally promiscuous and/or located in terminal modules lacking downstream bottlenecks. These limitations have prevented the engineering of ATs with low native promiscuity and the study of any potential gatekeeping effects by domains downstream of an engineered AT. In an effort to address this gap in PKS engineering knowledge, the substrate preferences of the final two modules of the pikromycin PKS were compared for several non-natural extender units and through active site mutagenesis. This led to engineering of the methylmalonyl-CoA specificity of both modules and inversion of their selectivity to prefer consecutive non-natural derivatives. Analysis of the product distributions of these bimodular reactions revealed unexpected metabolites resulting from gatekeeping by the downstream ketoreductase and ketosynthase domains. Despite these new bottlenecks, AT engineering provided the first full-length polyketide products incorporating two non-natural extender units. Together, this combination of tandem AT engineering and the identification of previously poorly characterized bottlenecks provides a platform for future advancements in the field.

摘要

人们对使聚酮结构多样化以创造这些生物活性分子的新类似物非常感兴趣。这传统上是通过专注于工程化负责掺入丙二酰辅酶 A 延伸单元的聚酮合酶 (PKS) 的酰基转移酶 (AT) 结构域来实现的。以前已经使用工程 PKS 利用了非天然延伸单元;然而,迄今为止,大多数工作都是在天然混杂的 AT 或位于缺乏下游瓶颈的末端模块中完成的。这些限制阻止了低天然混杂性的 AT 的工程化以及对工程化 AT 下游结构域的任何潜在门控效应的研究。为了弥补这一 PKS 工程知识的空白,比较了 pikromycin PKS 的最后两个模块对几种非天然延伸单元的底物偏好,并通过活性位点诱变进行了研究。这导致了两个模块的甲基丙二酰辅酶 A 特异性的工程化,并反转了它们对连续非天然衍生物的选择性。对这些双模块反应的产物分布进行分析揭示了由下游酮还原酶和酮合酶结构域的门控作用产生的意想不到的代谢物。尽管存在这些新的瓶颈,AT 工程化还是提供了第一个包含两个非天然延伸单元的全长聚酮产物。总之,这种串联 AT 工程化和先前表征较差的瓶颈的鉴定相结合,为该领域的未来发展提供了一个平台。

相似文献

6
Ketosynthase Domain Constrains the Design of Polyketide Synthases.酮合成酶结构域限制聚酮合酶的设计。
ACS Chem Biol. 2020 Sep 18;15(9):2422-2432. doi: 10.1021/acschembio.0c00405. Epub 2020 Aug 26.

引用本文的文献

6
Enzymology of assembly line synthesis by modular polyketide synthases.模块化聚酮合酶进行流水线式合成的酶学
Nat Chem Biol. 2023 Apr;19(4):401-415. doi: 10.1038/s41589-023-01277-7. Epub 2023 Mar 13.
8
Chemoenzymatic synthesis of fluorinated polyketides.氟代聚酮的化学酶合成。
Nat Chem. 2022 Sep;14(9):1000-1006. doi: 10.1038/s41557-022-00996-z. Epub 2022 Jul 25.

本文引用的文献

2
Engineering enzymatic assembly lines for the production of new antimicrobials.工程酶组装线生产新型抗菌药物。
Curr Opin Microbiol. 2018 Oct;45:140-148. doi: 10.1016/j.mib.2018.04.005. Epub 2018 May 4.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验