Suppr超能文献

使用 PROMIS-29 对全国颈椎手术患者样本进行颈残障指数(NDI)评分预测。

Using PROMIS-29 to predict Neck Disability Index (NDI) scores using a national sample of cervical spine surgery patients.

机构信息

Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Center for Musculoskeletal Research, Vanderbilt University Medical Center, Nashville, TN, USA.

Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, USA.

出版信息

Spine J. 2020 Aug;20(8):1305-1315. doi: 10.1016/j.spinee.2020.04.028. Epub 2020 May 12.

Abstract

BACKGROUND CONTEXT

Patient reported outcome measures (PROMs) are valuable tools for evaluating the success of spine surgery, with the Neck Disability Index (NDI) commonly used to assess pain-related disability. Recently, patient-reported outcomes measurement information system (PROMIS) has gained attention in its ability to measure PROs across general patient populations. However, PROMIS is not condition-specific so spine researchers are reluctant to incorporate it in place of common legacy measures.

PURPOSE

To compare the PROMIS-29 (v2.0) to the NDI and compute a conversion equation.

STUDY DESIGN

This study retrospectively analyzes prospectively collected data from the cervical module of national spine registry, the Quality Outcomes Database (QOD).

PATIENT SAMPLE

The QOD was queried for cervical spine surgery patients with PROMIS-29 and NDI scores. The cervical module of QOD includes patients undergoing primary or revision surgery for cervical degenerative spine diseases. Exclusion criteria included age under 18 years and diagnoses of infection, tumor, or trauma as the cause of cervical-related pain.

OUTCOME MEASURES

The outcome of interest for this study was a conversion equation from PROMIS-29 to NDI.

METHODS

The PROMIS-29 includes seven 4-item domains each rated on a 5-point scale: Physical function, depression, anxiety, fatigue, sleep disturbance, ability to participate in social roles and activities (social roles), and pain interference plus one stand-alone pain intensity item. The NDI contains 10 pain-related questions scored from 0 (no pain) to 5 (most severe pain). Outcomes were collected prior to surgery and at 3- and 12-month post surgery. Patients were included in the current analysis if they had outcome data available at one or more time points. Multivariable mixed effects regression models predicting NDI scores from PROMIS-29 domains were conducted in a development data set and validated in a separate data set. Predicted NDI scores were plotted against NDI scores to determine how well PROMIS-29 domains predicted NDI. Conversion equations were created from the PROMIS-29 regression coefficients.

RESULTS

2,018 patients from 18 US hospitals were included (mean age=57 years (SD=12)) with 48% female, 87% Caucasian, and 11% had revision surgery. Strong correlations were found between NDI and pain interference (r=0.79), pain intensity (r=0.74), social roles (r=-0.71), physical function (r=-0.69), sleep disturbance (r=0.63), fatigue (r=0.63), and anxiety (r=0.54). Correlation between NDI and depression (r=0.49) was slightly weaker. The pattern of correlations was consistent across timepoints. Four conversion equations were created for NDI using (1) only pain interference, (2) only physical function, (3) pain interference and physical function, and (4) the five statistically significant domains of pain interference, physical function, social roles, sleep disturbance, and anxiety, plus the pain intensity item. Equations 1, 3, and 4 were the best predictors of NDI, predicting approximately 80% of NDI scores within 15 points in the validation data set. Equation 4 (NDI=18.897+0.855*[pain interference]-0.694*[physical function]+2.010*[pain intensity]-0.663*[social roles]+0.732*[sleep disturbance]+0.426*[anxiety]) predicted NDI most accurately with an R between the predicted and actual NDI scores of 0.72. Model 1 (R = 0.62; NDI=-4.055+3.164*[pain interference])) and Model 3 (R=0.65; NDI%=17.321+2.543*[pain interference]-1.012*[physical function]) also had good accuracy.

CONCLUSIONS

Findings suggest accurate NDI scores can be derived from PROMIS-29 domains. Clinicians who want to move from NDI to PROMIS-29 can use this equation to obtain estimated NDI scores when only collecting PROMIS-29. These results support the use of PROMIS-29 in cervical surgery populations and underscore the idea that PROMIS-29 domains have the potential to replace disease-specific traditional PROMs.

摘要

背景

患者报告的结局测量(PROMs)是评估脊柱手术成功的有价值的工具,颈痛残疾指数(NDI)常用于评估与疼痛相关的残疾。最近,患者报告结局测量信息系统(PROMIS)因其能够在一般患者人群中测量 PROs 而受到关注。然而,PROMIS 不是针对特定疾病的,因此脊柱研究人员不愿意用它来替代常见的传统 PROMs。

目的

比较 PROMIS-29(v2.0)与 NDI,并计算转换方程。

研究设计

本研究回顾性分析了全国脊柱登记处(QOD)颈椎模块中前瞻性收集的数据。

患者样本

QOD 被查询了接受颈椎退行性疾病的颈椎手术的患者,包括 PROMIS-29 和 NDI 评分。QOD 的颈椎模块包括接受原发性或翻修手术的患者。排除标准包括年龄小于 18 岁和感染、肿瘤或创伤作为颈椎相关疼痛的原因。

结局测量

本研究的结果是从 PROMIS-29 到 NDI 的转换方程。

方法

PROMIS-29 包括七个 4 项的域,每个域都在 5 分制上进行评分:生理功能、抑郁、焦虑、疲劳、睡眠障碍、参与社会角色和活动的能力(社会角色)以及疼痛干扰加上一个独立的疼痛强度项目。NDI 包含 10 个与疼痛相关的问题,评分范围从 0(无疼痛)到 5(最严重疼痛)。术前和术后 3 个月和 12 个月收集结局数据。如果患者在一个或多个时间点有结局数据,则纳入当前分析。在一个发展数据集和一个独立数据集分别进行了预测 NDI 评分的多变量混合效应回归模型。用 NDI 评分来确定 PROMIS-29 域如何预测 NDI 评分。从 PROMIS-29 回归系数中创建转换方程。

结果

来自 18 家美国医院的 2018 名患者被纳入(平均年龄 57 岁[标准差 12 岁]),其中 48%为女性,87%为白种人,11%为翻修手术。NDI 与疼痛干扰(r=0.79)、疼痛强度(r=0.74)、社会角色(r=-0.71)、生理功能(r=-0.69)、睡眠障碍(r=0.63)、疲劳(r=0.63)和焦虑(r=0.54)之间存在很强的相关性。NDI 与抑郁(r=0.49)的相关性稍弱。这种相关性的模式在各个时间点都是一致的。使用(1)仅疼痛干扰,(2)仅生理功能,(3)疼痛干扰和生理功能,和(4)疼痛干扰、生理功能、社会角色、睡眠障碍和焦虑的五个统计学显著域,加上疼痛强度项目,创建了四个 NDI 转换方程。方程 1、3 和 4 是 NDI 的最佳预测因子,在验证数据集内预测大约 80%的 NDI 评分在 15 分以内。方程 4(NDI=18.897+0.855*[疼痛干扰]-0.694*[生理功能]+2.010*[疼痛强度]-0.663*[社会角色]+0.732*[睡眠障碍]+0.426*[焦虑])预测 NDI 最准确,预测和实际 NDI 评分之间的 R 值为 0.72。模型 1(R=0.62;NDI=-4.055+3.164*[疼痛干扰])和模型 3(R=0.65;NDI%=17.321+2.543*[疼痛干扰]-1.012*[生理功能])也有很好的准确性。

结论

结果表明可以从 PROMIS-29 域中准确地得出 NDI 评分。希望从 NDI 转移到 PROMIS-29 的临床医生可以在仅收集 PROMIS-29 时使用该方程获得估计的 NDI 评分。这些结果支持在颈椎手术人群中使用 PROMIS-29,并强调 PROMIS-29 域具有替代特定疾病的传统 PROMs 的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验