Suppr超能文献

材料驱动的纤连蛋白组装挽救了成纤维细胞中由于胶原 IV 突变引起的基质缺陷。

Material-driven fibronectin assembly rescues matrix defects due to mutations in collagen IV in fibroblasts.

机构信息

Centre for the Cellular Microenvironment, University of Glasgow, Glasgow, G12 8LT, UK.

Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.

出版信息

Biomaterials. 2020 Sep;252:120090. doi: 10.1016/j.biomaterials.2020.120090. Epub 2020 May 3.

Abstract

Basement membranes (BMs) are specialised extracellular matrices that provide structural support to tissues as well as influence cell behaviour and signalling. Mutations in COL4A1/COL4A2, a major BM component, cause a familial form of eye, kidney and cerebrovascular disease, including stroke, while common variants in these genes are a risk factor for intracerebral haemorrhage in the general population. These phenotypes are associated with matrix defects, due to mutant protein incorporation in the BM and/or its absence by endoplasmic reticulum (ER) retention. However, the effects of these mutations on matrix stiffness, the contribution of the matrix to the disease mechanism(s) and its effects on the biology of cells harbouring a collagen IV mutation remain poorly understood. To shed light on this, we employed synthetic polymer biointerfaces, poly(ethyl acrylate) (PEA) and poly(methyl acrylate) (PMA) coated with ECM proteins laminin or fibronectin (FN), to generate controlled microenvironments and investigate their effects on the cellular phenotype of primary fibroblasts harbouring a COL4A2 mutation. FN nanonetworks assembled on PEA induced increased deposition and assembly of collagen IV in COL4A2 cells, which was associated with reduced ER size and enhanced levels of protein chaperones such as BIP, suggesting increased protein folding capacity of the cell. FN nanonetworks on PEA also partially rescued the reduced stiffness of the deposited matrix and cells, and enhanced cell adhesion through increased actin-myosin contractility, effectively rescuing some of the cellular phenotypes associated with COL4A1/4A2 mutations. The mechanism by which FN nanonetworks enhanced the cell phenotype involved integrin β-mediated signalling. Collectively, these results suggest that biomaterials and enhanced integrin signalling via assembled FN are able to shape the matrix and cellular phenotype of the COL4A2 mutation in patient-derived cells.

摘要

基底膜(BMs)是一种专门的细胞外基质,为组织提供结构支持,并影响细胞行为和信号传递。COL4A1/COL4A2 基因突变是一种眼部、肾脏和脑血管疾病的家族形式,包括中风,而这些基因的常见变体是普通人群发生脑出血的一个风险因素。这些表型与基质缺陷有关,这是由于突变蛋白在 BM 中的掺入和/或 ER 保留导致其缺失。然而,这些突变对基质硬度的影响、基质对疾病机制的贡献以及其对携带胶原蛋白 IV 突变的细胞生物学的影响仍知之甚少。为了阐明这一点,我们采用了合成聚合物生物界面,即用涂有 ECM 蛋白层粘连蛋白或纤连蛋白(FN)的聚(乙基丙烯酸酯)(PEA)和聚(甲基丙烯酸酯)(PMA),以生成受控的微环境并研究其对携带 COL4A2 突变的原代成纤维细胞的细胞表型的影响。PEA 上组装的 FN 纳米网络诱导 COL4A2 细胞中胶原蛋白 IV 的沉积和组装增加,这与 ER 大小减小和蛋白伴侣如 BIP 的水平增强有关,这表明细胞的蛋白折叠能力增强。PEA 上的 FN 纳米网络还部分挽救了沉积基质和细胞的刚度降低,并通过增加肌动球蛋白收缩性增强细胞黏附性,有效地挽救了与 COL4A1/4A2 突变相关的一些细胞表型。FN 纳米网络增强细胞表型的机制涉及整合素 β 介导的信号传递。总之,这些结果表明,生物材料和通过组装 FN 增强的整合素信号能够塑造 COL4A2 突变患者来源细胞的基质和细胞表型。

相似文献

8
The strength of the protein-material interaction determines cell fate.蛋白质-材料相互作用的强度决定了细胞命运。
Acta Biomater. 2018 Sep 1;77:74-84. doi: 10.1016/j.actbio.2018.07.016. Epub 2018 Jul 10.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验