Department of Mathematics, University of California at Berkeley, United States.
SRI International, Menlo Park, CA 94025, United States.
Life Sci Space Res (Amst). 2020 May;25:107-118. doi: 10.1016/j.lssr.2020.01.001. Epub 2020 Jan 7.
Health risks from galactic cosmic rays (GCR) in space travel above low earth orbit remain a concern. For many years accelerator experiments investigating space radiation induced prevalence of murine Harderian gland (HG) tumorigenesis have been performed to help estimate GCR risks. Most studies used acute, relatively low fluence, exposures. Results on a broad spectrum of individual ions and linear energy transfers (LETs) have become available. However, in space, the crew are exposed simultaneously to many different GCR. Recent upgrades at the Brookhaven NASA Space Radiation Laboratory (NSRL) now allow mixtures in the form of different one-ion beams delivered in rapid sequence. This paper uses the results of three two-ion mixture experiments to illustrate conceptual, mathematical, computational, and statistical aspects of synergy analyses and also acts as an interim report on the mixture experiments' results. The results were interpreted using the following: (a) accumulated data from HG one-ion accelerator experiments; (b) incremental effect additivity synergy theory rather than simple effect additivity synergy theory; (c) parsimonious models for one-ion dose-effect relations; and (d), computer-implemented numerical methods encapsulated in freely available open source customized software. The main conclusions are the following. As yet, the murine HG tumorigenesis experimental studies show synergy in only one case out of three. Moreover, some theoretical arguments suggest GCR-simulating mixed beams are not likely to be synergistic. However, more studies relevant to possible synergy are needed by various groups that are studying various endpoints. Especially important is the possibility of synergy among high-LET radiations, since individual high-LET ions have large relative biological effectiveness for many endpoints. Selected terminology, symbols, and abbreviations. DER - dose-effect relation; E(d) - DER of a one-ion beam, where d is dose; HG prevalence p - in this paper, p is the number of mice with at least one Harderian gland tumor divided by the number of mice that are at risk of developing Harderian gland tumors (so that in this paper prevalence p can never, conceptually speaking, be greater than 1); IEA - incremental effect additivity synergy theory; synergy level - a specification, exemplified in Fig. 5, of how clear-cut an observed synergy is; mixmix principle - a consistency condition on a synergy theory which insures that the synergy theory treats mixtures of agent mixtures in a mathematically self-consistent way; NTE - non-targeted effect(s); NSNA - neither synergy nor antagonism; SEA - simple effect additivity synergy theory; TE - targeted effect(s); β* - ion speed relative to the speed of light, with 0 < β* < 1; SLI - swift light ion(s).
太空旅行中地球轨道以上的银河宇宙射线(GCR)对健康的危害仍然令人担忧。多年来,为了帮助估计 GCR 风险,一直在进行研究空间辐射诱导的小鼠哈德腺(HG)肿瘤发生的加速器实验。大多数研究使用急性、相对低剂量的暴露。关于各种单个离子和线性能量传递(LET)的结果已经可用。然而,在太空中,机组人员同时会受到许多不同的 GCR 的照射。布鲁克海文 NASA 太空辐射实验室(NSRL)的最新升级现在允许以快速顺序输送不同单离子束的形式形成混合物。本文使用三个双离子混合物实验的结果来说明协同作用分析的概念、数学、计算和统计方面,并且作为混合物实验结果的临时报告。结果使用以下方法进行解释:(a)HG 单离子加速器实验的累积数据;(b)增量效应相加协同作用理论而不是简单效应相加协同作用理论;(c)单离子剂量-效应关系的简约模型;(d)封装在免费提供的开源定制软件中的计算机实现数值方法。主要结论如下。到目前为止,在三个双离子混合物实验中,只有一个实验显示出协同作用。此外,一些理论观点表明,模拟 GCR 的混合束不太可能具有协同作用。然而,研究各种终点的不同小组需要进行更多的关于可能协同作用的研究。特别重要的是高 LET 辐射之间协同作用的可能性,因为对于许多终点,单个高 LET 离子的相对生物学效应都很大。选定的术语、符号和缩写。DER-剂量-效应关系;E(d)-单离子束的 DER,其中 d 是剂量;HG 流行率 p-在本文中,p 是至少有一个哈德腺肿瘤的小鼠数量除以有哈德腺肿瘤风险的小鼠数量(因此,从概念上讲,p 永远不会大于 1);IEA-增量效应相加协同作用理论;协同水平-如图 5 所示的对观察到的协同作用有多明显的说明;mixmix 原则-协同作用理论的一致性条件,确保协同作用理论以数学上一致的方式处理试剂混合物的混合物;NTE-非靶向效应;NSNA-无协同作用也无拮抗作用;SEA-简单效应相加协同作用理论;TE-靶向效应;β*-离子速度相对于光速,其中 0<β*<1;SLI-快光离子。