Poignant Floriane, Plante Ianik, Crespo Luis, Slaba Tony
National Institute of Aerospace, Hampton, VA 23666, USA.
KBR, Houston, TX 77058, USA.
Life (Basel). 2022 Mar 1;12(3):358. doi: 10.3390/life12030358.
Studying energy deposition by space radiation at the cellular scale provides insights on health risks to astronauts. Using the Monte Carlo track structure code RITRACKS, and the chromosome aberrations code RITCARD, we performed a modeling study of single-ion energy deposition spectra and chromosome aberrations for high-energy (>250 MeV/n) ion beams with linear energy transfer (LET) varying from 0.22 to 149.2 keV/µm. The calculations were performed using cells irradiated directly by mono-energetic ion beams, and by poly-energetic beams after particle transport in a digital mouse model, representing the radiation exposure of a cell in a tissue. To discriminate events from ion tracks directly traversing the nucleus, to events from δ-electrons emitted by distant ion tracks, we categorized ion contributions to microdosimetry or chromosome aberrations into direct and indirect contributions, respectively. The ions were either ions of the mono-energetic beam or secondary ions created in the digital mouse due to interaction of the beam with tissues. For microdosimetry, the indirect contribution is largely independent of the beam LET and minimally impacted by the beam interactions in mice. In contrast, the direct contribution is strongly dependent on the beam LET and shows increased probabilities of having low and high-energy deposition events when considering beam transport. Regarding chromosome aberrations, the indirect contribution induces a small number of simple exchanges, and a negligible number of complex exchanges. The direct contribution is responsible for most simple and complex exchanges. The complex exchanges are significantly increased for some low-LET ion beams when considering beam transport.
在细胞尺度上研究空间辐射的能量沉积有助于深入了解宇航员面临的健康风险。我们使用蒙特卡罗径迹结构代码RITRACKS和染色体畸变代码RITCARD,对能量大于250 MeV/n、线能量转移(LET)在0.22至149.2 keV/µm之间变化的高能离子束的单离子能量沉积谱和染色体畸变进行了建模研究。计算是使用单能离子束直接照射的细胞,以及在数字小鼠模型中粒子传输后的多能束照射的细胞进行的,该模型代表组织中细胞的辐射暴露。为了区分直接穿过细胞核的离子径迹事件和远处离子径迹发射的δ电子事件,我们将离子对微剂量学或染色体畸变的贡献分别归类为直接贡献和间接贡献。这些离子要么是单能束的离子,要么是由于束与组织相互作用在数字小鼠中产生的二次离子。对于微剂量学,间接贡献在很大程度上与束的LET无关,并且受小鼠中束相互作用的影响最小。相比之下,直接贡献强烈依赖于束的LET,并且在考虑束传输时显示出低能量和高能量沉积事件的概率增加。关于染色体畸变,间接贡献诱导少量简单交换和可忽略不计的复杂交换。直接贡献导致了大多数简单和复杂交换。在考虑束传输时,对于一些低LET离子束,复杂交换显著增加。