Huang Edward Greg, Lin Yimin, Ebert Mark, Ham Dae Woong, Zhang Claire Yunzhi, Sachs Rainer K
Department of Mathematics, University of California at Berkeley, Berkeley, CA, 94720, USA.
Department of Statistics, University of California at Berkeley, Berkeley, CA, 94720, USA.
Radiat Environ Biophys. 2019 May;58(2):151-166. doi: 10.1007/s00411-018-00774-x. Epub 2019 Feb 2.
Experimental studies reporting murine Harderian gland (HG) tumourigenesis have been a NASA concern for many years. Studies used particle accelerators to produce beams that, on beam entry, consist of a single isotope also present in the galactic cosmic ray (GCR) spectrum. In this paper synergy theory is described, potentially applicable to corresponding mixed-field experiments, in progress, planned, or hypothetical. The "obvious" simple effect additivity (SEA) approach of comparing an observed mixture dose-effect relationship (DER) to the sum of the components' DERs is known from other fields of biology to be unreliable when the components' DERs are highly curvilinear. Such curvilinearity may be present at low fluxes such as those used in the one-ion HG experiments due to non-targeted ('bystander') effects, in which case a replacement for SEA synergy theory is needed. This paper comprises in silico modeling of published experimental data using a recently introduced, arguably optimal, replacement for SEA: incremental effect additivity (IEA). Customized open-source software is used. IEA is based on computer numerical integration of non-linear ordinary differential equations. To illustrate IEA synergy theory, possible rapidly-sequential-beam mixture experiments are discussed, including tight 95% confidence intervals calculated by Monte-Carlo sampling from variance-covariance matrices. The importance of having matched one-ion and mixed-beam experiments is emphasized. Arguments are presented against NASA over-emphasizing accelerator experiments with mixed beams whose dosing protocols are standardized rather than being adjustable to take biological variability into account. It is currently unknown whether mixed GCR beams sometimes have statistically significant synergy for the carcinogenesis endpoint. Synergy would increase risks for prolonged astronaut voyages in interplanetary space.
多年来,美国国家航空航天局(NASA)一直关注有关小鼠哈德氏腺(HG)肿瘤发生的实验研究。这些研究使用粒子加速器产生射线束,射线束进入时由银河系宇宙射线(GCR)光谱中也存在的单一同位素组成。本文描述了协同理论,该理论可能适用于正在进行、计划进行或假设的相应混合场实验。在生物学的其他领域,当各组分的剂量效应关系(DER)高度呈曲线状时,将观察到的混合物剂量效应关系与各组分DER之和进行比较的“明显”简单效应相加(SEA)方法是不可靠的。在低通量情况下,例如单离子HG实验中使用的通量,由于非靶向(“旁观者”)效应,可能会出现这种曲线状,在这种情况下,需要一种替代SEA协同理论的方法。本文包括使用最近引入的、可以说是最优的SEA替代方法:增量效应相加(IEA),对已发表的实验数据进行计算机模拟。使用了定制的开源软件。IEA基于非线性常微分方程的计算机数值积分。为了说明IEA协同理论,讨论了可能的快速顺序束混合物实验,包括通过蒙特卡罗采样从方差协方差矩阵计算出的紧密95%置信区间。强调了进行匹配的单离子和混合束实验的重要性。有人反对NASA过度强调混合束加速器实验,其给药方案是标准化的,而不是可调整的,以考虑生物变异性。目前尚不清楚混合GCR束对于致癌终点有时是否具有统计学上显著的协同作用。协同作用会增加宇航员在行星际空间进行长时间航行的风险。