Department of Health Physics and Diagnostic Sciences, University of Nevada, Box 453037, Las Vegas, NV 89195-3037, United States.
Department of Health Physics and Diagnostic Sciences, University of Nevada, Box 453037, Las Vegas, NV 89195-3037, United States.
Life Sci Space Res (Amst). 2020 May;25:129-135. doi: 10.1016/j.lssr.2019.10.004. Epub 2019 Oct 16.
For the first-time we report on predictions on cognitive detriments from galactic cosmic ray (GCR) exposures on long-duration space missions outside the protection of the Earth's magnetosphere and solid body shielding. Estimates are based on a relative risk (RR) model of the fluence response for proton and heavy ion in rodent studies using the widely used novel object recognition (NOR) test, which estimates detriments in recognition or object memory. Our recent meta-analysis showed that linear and linear-quadratic dose response models were not accurate, while exponential increasing fluence response models based on particle track structure provided good descriptions of rodent data for doses up to 1 Gy. Using detailed models of the GCR environment and particle transport in shielding and tissue, we predict the excess relative risk (ERR) for NOR detriments for several long-term space mission scenarios. Predictions suggest ERR < 0.15 for most space mission scenarios with ERR<0.1 for 1-year lunar surface missions, and about ERR~0.1 for a 1000 day Mars mission for average solar cycle conditions. We discuss possible implications of these ERR levels of cognitive performance detriments relative to other neurological challenges such as rodent models of Alzheimer's disease (AD), Parkinson's disease (PD) and traumatic brain injury (TBI). Comparisons suggest a small but potentially clinically significant risk for possible space mission scenarios.
这是我们首次报告关于在地球磁层和实体屏蔽保护之外的长期空间任务中,银河宇宙射线(GCR)暴露对认知能力损害的预测。这些预测是基于啮齿动物研究中质子和重离子通量反应的相对风险(RR)模型得出的,该模型使用了广泛使用的新物体识别(NOR)测试来估计识别或物体记忆方面的损害。我们最近的荟萃分析表明,线性和线性二次剂量响应模型并不准确,而基于粒子轨迹结构的指数递增通量响应模型则能很好地描述高达 1 Gy 剂量的啮齿动物数据。我们使用 GCR 环境和屏蔽及组织中粒子传输的详细模型,预测了几种长期空间任务场景下 NOR 损害的超额相对风险(ERR)。预测表明,对于大多数空间任务场景,ERR<0.15,对于为期 1 年的月球表面任务,ERR<0.1,对于平均太阳活动周期条件下为期 1000 天的火星任务,ERR 约为 0.1。我们讨论了这些认知表现损害的 ERR 水平与其他神经学挑战(如阿尔茨海默病(AD)、帕金森病(PD)和创伤性脑损伤(TBI)的啮齿动物模型)相对的可能意义。比较表明,对于可能的空间任务场景,存在着较小但潜在的临床显著风险。