Borg Alexander M, Baker John E
Departments of Biomedical Engineering and Radiation Oncology, Wake Forest University, Winston-Salem, NC, USA.
Radiation Biosciences Laboratory, Medical College of Wisconsin, Milwaukee, WI, USA.
Synth Biol (Oxf). 2021 Sep 2;6(1):ysab023. doi: 10.1093/synbio/ysab023. eCollection 2021.
A primary objective of the National Aeronautics and Space Administration (NASA) is expansion of humankind's presence outside low-Earth orbit, culminating in permanent interplanetary travel and habitation. Having no inherent means of physiological detection or protection against ionizing radiation, humans incur capricious risk when journeying beyond low-Earth orbit for long periods. NASA has made large investments to analyze pathologies from space radiation exposure, emphasizing the importance of characterizing radiation's physiological effects. Because natural evolution would require many generations to confer resistance against space radiation, immediately pragmatic approaches should be considered. Volitional evolution, defined as humans steering their own heredity, may inevitably retrofit the genome to mitigate resultant pathologies from space radiation exposure. Recently, uniquely radioprotective genes have been identified, conferring local or systemic radiotolerance when overexpressed and . Aiding in this process, the CRISPR/Cas9 technique is an inexpensive and reproducible instrument capable of making limited additions and deletions to the genome. Although cohorts can be identified and engineered to protect against radiation, alternative and supplemental strategies should be seriously considered. Advanced propulsion and mild synthetic torpor are perhaps the most likely to be integrated. Interfacing artificial intelligence with genetic engineering using predefined boundary conditions may enable the computational modeling of otherwise overly complex biological networks. The ethical context and boundaries of introducing genetically pioneered humans are considered.
美国国家航空航天局(NASA)的一个主要目标是扩大人类在低地球轨道以外的存在,最终实现永久性的星际旅行和居住。由于人类没有内在的生理检测手段或针对电离辐射的防护措施,长时间在低地球轨道以外旅行时会面临反复无常的风险。NASA已投入大量资金来分析太空辐射暴露导致的病理情况,强调了描述辐射生理效应的重要性。由于自然进化需要许多代才能赋予对太空辐射的抗性,因此应考虑立即采取务实的方法。意志进化被定义为人类操控自身遗传,可能不可避免地对基因组进行改造,以减轻太空辐射暴露产生的病理影响。最近,已经鉴定出独特的辐射防护基因,当这些基因过表达时可赋予局部或全身辐射耐受性。在这个过程中,CRISPR/Cas9技术是一种廉价且可重复的工具,能够对基因组进行有限的添加和删除。尽管可以识别并设计出能抵御辐射的群体,但应认真考虑其他替代和补充策略。先进的推进技术和轻度的人工冬眠可能是最有可能被整合的。利用预定义的边界条件将人工智能与基因工程相结合,可能会实现对原本过于复杂的生物网络的计算建模。文中还考虑了引入基因改造人类的伦理背景和界限。