Suppr超能文献

基于时间序列的基因表达状态转换分析鉴定出预测急性髓系白血病发生的关键节点。

State-Transition Analysis of Time-Sequential Gene Expression Identifies Critical Points That Predict Development of Acute Myeloid Leukemia.

机构信息

Division of Mathematical Oncology, Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope Medical Center, Duarte, California.

Department of Diabetes Complications & Metabolism, Beckman Research Institute, City of Hope Medical Center, Duarte, California.

出版信息

Cancer Res. 2020 Aug 1;80(15):3157-3169. doi: 10.1158/0008-5472.CAN-20-0354. Epub 2020 May 15.

Abstract

Temporal dynamics of gene expression inform cellular and molecular perturbations associated with disease development and evolution. Given the complexity of high-dimensional temporal genomic data, an analytic framework guided by a robust theory is needed to interpret time-sequential changes and to predict system dynamics. Here we model temporal dynamics of the transcriptome of peripheral blood mononuclear cells in a two-dimensional state-space representing states of health and leukemia using time-sequential bulk RNA-seq data from a murine model of acute myeloid leukemia (AML). The state-transition model identified critical points that accurately predict AML development and identifies stepwise transcriptomic perturbations that drive leukemia progression. The geometry of the transcriptome state-space provided a biological interpretation of gene dynamics, aligned gene signals that are not synchronized in time across mice, and allowed quantification of gene and pathway contributions to leukemia development. Our state-transition model synthesizes information from multiple cell types in the peripheral blood and identifies critical points in the transition from health to leukemia to guide interpretation of changes in the transcriptome as a whole to predict disease progression. SIGNIFICANCE: These findings apply the theory of state transitions to model the initiation and development of acute myeloid leukemia, identifying transcriptomic perturbations that accurately predict time to disease development. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/15/3157/F1.large.jpg.

摘要

基因表达的时间动态为与疾病发展和演变相关的细胞和分子变化提供了信息。鉴于高维时间基因组数据的复杂性,需要一个由稳健理论指导的分析框架来解释时间序列变化并预测系统动态。在这里,我们使用急性髓系白血病 (AML) 小鼠模型的时间序列批量 RNA-seq 数据,在代表健康和白血病状态的二维状态空间中对外周血单个核细胞的转录组的时间动态进行建模。状态转换模型确定了准确预测 AML 发展的关键点,并确定了逐步驱动白血病进展的转录组扰动。转录组状态空间的几何形状为基因动力学提供了生物学解释,对齐了在时间上不在小鼠之间同步的基因信号,并允许量化基因和途径对白血病发展的贡献。我们的状态转换模型综合了外周血中多种细胞类型的信息,并确定了从健康到白血病的转变中的关键点,以指导对整个转录组变化的解释,从而预测疾病进展。意义:这些发现将状态转换理论应用于模型的起始和发展急性髓系白血病,确定了准确预测疾病发展时间的转录组扰动。

相似文献

3
Predicting Cancer Evolution Using Cell State Dynamics.利用细胞状态动力学预测癌症演变。
Cancer Res. 2020 Aug 1;80(15):3072-3073. doi: 10.1158/0008-5472.CAN-20-1878.
6
MYBL2 Supports DNA Double Strand Break Repair in Hematopoietic Stem Cells.MYBL2 在造血干细胞中支持 DNA 双链断裂修复。
Cancer Res. 2018 Oct 15;78(20):5767-5779. doi: 10.1158/0008-5472.CAN-18-0273. Epub 2018 Aug 6.

引用本文的文献

8
Epigenetics as a mediator of plasticity in cancer.表观遗传学作为癌症可塑性的介体。
Science. 2023 Feb 10;379(6632):eaaw3835. doi: 10.1126/science.aaw3835.
9
A Review of Mathematical and Computational Methods in Cancer Dynamics.癌症动力学中的数学与计算方法综述
Front Oncol. 2022 Jul 25;12:850731. doi: 10.3389/fonc.2022.850731. eCollection 2022.

本文引用的文献

2
A longitudinal big data approach for precision health.纵向大数据方法用于精准健康。
Nat Med. 2019 May;25(5):792-804. doi: 10.1038/s41591-019-0414-6. Epub 2019 May 8.
6
Informational structures: A dynamical system approach for integrated information.信息结构:综合信息的动力系统方法。
PLoS Comput Biol. 2018 Sep 13;14(9):e1006154. doi: 10.1371/journal.pcbi.1006154. eCollection 2018 Sep.
7
Enter the Matrix: Factorization Uncovers Knowledge from Omics.《进入矩阵:从组学中发现知识的因子分解》
Trends Genet. 2018 Oct;34(10):790-805. doi: 10.1016/j.tig.2018.07.003. Epub 2018 Aug 22.
9
Prediction of acute myeloid leukaemia risk in healthy individuals.预测健康个体中的急性髓系白血病风险。
Nature. 2018 Jul;559(7714):400-404. doi: 10.1038/s41586-018-0317-6. Epub 2018 Jul 9.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验