文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于时间序列的基因表达状态转换分析鉴定出预测急性髓系白血病发生的关键节点。

State-Transition Analysis of Time-Sequential Gene Expression Identifies Critical Points That Predict Development of Acute Myeloid Leukemia.

机构信息

Division of Mathematical Oncology, Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope Medical Center, Duarte, California.

Department of Diabetes Complications & Metabolism, Beckman Research Institute, City of Hope Medical Center, Duarte, California.

出版信息

Cancer Res. 2020 Aug 1;80(15):3157-3169. doi: 10.1158/0008-5472.CAN-20-0354. Epub 2020 May 15.


DOI:10.1158/0008-5472.CAN-20-0354
PMID:32414754
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7416495/
Abstract

Temporal dynamics of gene expression inform cellular and molecular perturbations associated with disease development and evolution. Given the complexity of high-dimensional temporal genomic data, an analytic framework guided by a robust theory is needed to interpret time-sequential changes and to predict system dynamics. Here we model temporal dynamics of the transcriptome of peripheral blood mononuclear cells in a two-dimensional state-space representing states of health and leukemia using time-sequential bulk RNA-seq data from a murine model of acute myeloid leukemia (AML). The state-transition model identified critical points that accurately predict AML development and identifies stepwise transcriptomic perturbations that drive leukemia progression. The geometry of the transcriptome state-space provided a biological interpretation of gene dynamics, aligned gene signals that are not synchronized in time across mice, and allowed quantification of gene and pathway contributions to leukemia development. Our state-transition model synthesizes information from multiple cell types in the peripheral blood and identifies critical points in the transition from health to leukemia to guide interpretation of changes in the transcriptome as a whole to predict disease progression. SIGNIFICANCE: These findings apply the theory of state transitions to model the initiation and development of acute myeloid leukemia, identifying transcriptomic perturbations that accurately predict time to disease development. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/15/3157/F1.large.jpg.

摘要

基因表达的时间动态为与疾病发展和演变相关的细胞和分子变化提供了信息。鉴于高维时间基因组数据的复杂性,需要一个由稳健理论指导的分析框架来解释时间序列变化并预测系统动态。在这里,我们使用急性髓系白血病 (AML) 小鼠模型的时间序列批量 RNA-seq 数据,在代表健康和白血病状态的二维状态空间中对外周血单个核细胞的转录组的时间动态进行建模。状态转换模型确定了准确预测 AML 发展的关键点,并确定了逐步驱动白血病进展的转录组扰动。转录组状态空间的几何形状为基因动力学提供了生物学解释,对齐了在时间上不在小鼠之间同步的基因信号,并允许量化基因和途径对白血病发展的贡献。我们的状态转换模型综合了外周血中多种细胞类型的信息,并确定了从健康到白血病的转变中的关键点,以指导对整个转录组变化的解释,从而预测疾病进展。意义:这些发现将状态转换理论应用于模型的起始和发展急性髓系白血病,确定了准确预测疾病发展时间的转录组扰动。

相似文献

[1]
State-Transition Analysis of Time-Sequential Gene Expression Identifies Critical Points That Predict Development of Acute Myeloid Leukemia.

Cancer Res. 2020-5-15

[2]
Dynamic patterns of microRNA expression during acute myeloid leukemia state-transition.

Sci Adv. 2022-4-22

[3]
Predicting Cancer Evolution Using Cell State Dynamics.

Cancer Res. 2020-8-1

[4]
Improving bulk RNA-seq classification by transferring gene signature from single cells in acute myeloid leukemia.

Brief Bioinform. 2022-3-10

[5]
Transcriptome free energy can serve as a dynamic patient-specific biomarker in acute myeloid leukemia.

NPJ Syst Biol Appl. 2024-3-25

[6]
MYBL2 Supports DNA Double Strand Break Repair in Hematopoietic Stem Cells.

Cancer Res. 2018-8-6

[7]
Metastatic Conditioning of Myeloid Cells at a Subcutaneous Synthetic Niche Reflects Disease Progression and Predicts Therapeutic Outcomes.

Cancer Res. 2019-10-29

[8]
Genomic Characterization of Six Virus-Associated Cancers Identifies Changes in the Tumor Immune Microenvironment and Altered Genetic Programs.

Cancer Res. 2018-9-25

[9]
Integrated transcriptomic and epigenetic data analysis identifiesaberrant expression of genes in acute myeloid leukemia with MLL‑AF9 translocation.

Mol Med Rep. 2019-11-26

[10]
Intra-heterogeneity in transcription and chemoresistant property of leukemia-initiating cells in murine Setd2 acute myeloid leukemia.

Cancer Commun (Lond). 2021-9

引用本文的文献

[1]
Deciphering the topological landscape of glioma using a network theory framework.

Sci Rep. 2024-11-5

[2]
Transcriptome free energy can serve as a dynamic patient-specific biomarker in acute myeloid leukemia.

NPJ Syst Biol Appl. 2024-3-25

[3]
State-transition modeling of blood transcriptome predicts disease evolution and treatment response in chronic myeloid leukemia.

Leukemia. 2024-4

[4]
State-transition Modeling of Blood Transcriptome Predicts Disease Evolution and Treatment Response in Chronic Myeloid Leukemia.

bioRxiv. 2023-12-9

[5]
Acquired miR-142 deficit in leukemic stem cells suffices to drive chronic myeloid leukemia into blast crisis.

Nat Commun. 2023-9-1

[6]
Proteomics and mathematical modeling of longitudinal CSF differentiates fast versus slow ALS progression.

Ann Clin Transl Neurol. 2023-11

[7]
The immunogenic radiation and new players in immunotherapy and targeted therapy for head and neck cancer.

Front Oral Health. 2023-7-11

[8]
Epigenetics as a mediator of plasticity in cancer.

Science. 2023-2-10

[9]
A Review of Mathematical and Computational Methods in Cancer Dynamics.

Front Oncol. 2022-7-25

[10]
Comparing Bayesian-Based Reconstruction Strategies in Topology-Based Pathway Enrichment Analysis.

Biomolecules. 2022-6-28

本文引用的文献

[1]
GSVD- and tensor GSVD-uncovered patterns of DNA copy-number alterations predict adenocarcinomas survival in general and in response to platinum.

APL Bioeng. 2019-8-20

[2]
A longitudinal big data approach for precision health.

Nat Med. 2019-5-8

[3]
Prognostic Impact of WT-1 and Survivin Gene Expression in Acute Myeloid Leukemia Patients.

Clin Lab. 2019-4-1

[4]
Measurable residual disease monitoring using Wilms tumor gene 1 expression in childhood acute myeloid leukemia based on child-specific reference values.

Pediatr Blood Cancer. 2019-3-21

[5]
Analysis of oncogenic activities of protein kinase D1 in head and neck squamous cell carcinoma.

BMC Cancer. 2018-11-12

[6]
Informational structures: A dynamical system approach for integrated information.

PLoS Comput Biol. 2018-9-13

[7]
Enter the Matrix: Factorization Uncovers Knowledge from Omics.

Trends Genet. 2018-8-22

[8]
Somatic mutations precede acute myeloid leukemia years before diagnosis.

Nat Med. 2018-7-9

[9]
Prediction of acute myeloid leukaemia risk in healthy individuals.

Nature. 2018-7-9

[10]
Exploring patterns enriched in a dataset with contrastive principal component analysis.

Nat Commun. 2018-5-30

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索