Suppr超能文献

3D 打印高强度、多孔弹性结构以促进植入物的组织整合。

3D printing of high-strength, porous, elastomeric structures to promote tissue integration of implants.

机构信息

Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina, USA.

Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA.

出版信息

J Biomed Mater Res A. 2021 Jan;109(1):54-63. doi: 10.1002/jbm.a.37006. Epub 2020 Jul 2.

Abstract

Despite advances in biomaterials research, there is no ideal device for replacing weight-bearing soft tissues like menisci or intervertebral discs due to poor integration with tissues and mechanical property mismatch. Designing an implant with a soft and porous tissue-contacting structure using a material conducive to cell attachment and growth could potentially address these limitations. Polycarbonate urethane (PCU) is a soft and tough biocompatible material that can be 3D printed into porous structures with controlled pore sizes. Porous biomaterials of appropriate chemistries can support cell proliferation and tissue ingrowth, but their optimal design parameters remain unclear. To investigate this, porous PCU structures were 3D-printed in a crosshatch pattern with a range of in-plane pore sizes (0 to 800 μm) forming fully interconnected porous networks. Printed porous structures had ultimate tensile strengths ranging from 1.9 to 11.6 MPa, strains to failure ranging from 300 to 486%, Young's moduli ranging from 0.85 to 12.42 MPa, and porosity ranging from 13 to 71%. These porous networks can be loaded with hydrogels, such as collagen gels, to provide additional biological support for cells. Bare PCU structures and collagen-hydrogel-filled porous PCU support robust NIH/3T3 fibroblast cell line proliferation over 14 days for all pore sizes. Results highlight PCU's potential in the development of tissue-integrating medical implants.

摘要

尽管生物材料研究取得了进展,但由于与组织的整合不良和机械性能不匹配,仍然没有理想的设备来替代半月板或椎间盘等承重软组织。设计一种具有柔软多孔的组织接触结构的植入物,使用有利于细胞附着和生长的材料,可能会解决这些局限性。聚碳酸酯聚氨酯(PCU)是一种柔软坚韧的生物相容性材料,可以 3D 打印成具有可控孔径的多孔结构。具有适当化学性质的多孔生物材料可以支持细胞增殖和组织内生长,但它们的最佳设计参数仍不清楚。为了研究这一点,采用交叉图案 3D 打印了一系列平面孔径(0 至 800μm)的 PCU 多孔结构,形成完全互连的多孔网络。打印的多孔结构的极限拉伸强度范围为 1.9 至 11.6MPa,破坏应变为 300 至 486%,杨氏模量为 0.85 至 12.42MPa,孔隙率为 13 至 71%。这些多孔网络可以加载水凝胶,如胶原蛋白凝胶,为细胞提供额外的生物支持。对于所有孔径,裸 PCU 结构和填充有胶原蛋白水凝胶的多孔 PCU 都支持 NIH/3T3 成纤维细胞系在 14 天内的大量增殖。结果突出了 PCU 在开发组织整合型医疗植入物方面的潜力。

相似文献

1
3D printing of high-strength, porous, elastomeric structures to promote tissue integration of implants.
J Biomed Mater Res A. 2021 Jan;109(1):54-63. doi: 10.1002/jbm.a.37006. Epub 2020 Jul 2.
3
The effect of porous structure on the cell proliferation, tissue ingrowth and angiogenic properties of poly(glycerol sebacate urethane) scaffolds.
Mater Sci Eng C Mater Biol Appl. 2020 Mar;108:110384. doi: 10.1016/j.msec.2019.110384. Epub 2019 Nov 4.
4
3D printing and characterization of a soft and biostable elastomer with high flexibility and strength for biomedical applications.
J Mech Behav Biomed Mater. 2020 Apr;104:103649. doi: 10.1016/j.jmbbm.2020.103649. Epub 2020 Jan 23.
5
Bionic mechanical design and 3D printing of novel porous Ti6Al4V implants for biomedical applications.
J Zhejiang Univ Sci B. 2019;20(8):647-659. doi: 10.1631/jzus.B1800622.
6
Stiffness memory nanohybrid scaffolds generated by indirect 3D printing for biologically responsive soft implants.
Acta Biomater. 2018 Oct 15;80:188-202. doi: 10.1016/j.actbio.2018.09.016. Epub 2018 Sep 15.
8
Do Surface Porosity and Pore Size Influence Mechanical Properties and Cellular Response to PEEK?
Clin Orthop Relat Res. 2016 Nov;474(11):2373-2383. doi: 10.1007/s11999-016-4833-0.
9
3D printing of photocurable poly(glycerol sebacate) elastomers.
Biofabrication. 2016 Oct 7;8(4):045004. doi: 10.1088/1758-5090/8/4/045004.
10
Fabrication and Evaluation of 3D Printed Porous Polyetherimide Scaffolds for Bone Tissue Engineering.
Biomed Res Int. 2019 Nov 11;2019:2076138. doi: 10.1155/2019/2076138. eCollection 2019.

引用本文的文献

1
Dumbbell-shaped hydrogel plug for annulus fibrosus repair: From material design to in vivo validation.
J Orthop Translat. 2025 Jun 25;53:175-186. doi: 10.1016/j.jot.2025.06.004. eCollection 2025 Jul.
5
Bioactive Composite Membranes: Preclinical Analysis of PBAT/BAGNb Composition to Enhance the Quality of Guided Bone Regeneration.
ACS Appl Mater Interfaces. 2025 Feb 26;17(8):11774-11781. doi: 10.1021/acsami.4c20580. Epub 2025 Feb 12.
9
10
4D printing of biocompatible, hierarchically porous shape memory polymeric structures.
Biomater Adv. 2023 Oct;153:213575. doi: 10.1016/j.bioadv.2023.213575. Epub 2023 Aug 1.

本文引用的文献

1
Integrated Design Approaches for 3D Printed Tissue Scaffolds: Review and Outlook.
Materials (Basel). 2019 Jul 24;12(15):2355. doi: 10.3390/ma12152355.
2
Polymers in Cartilage Defect Repair of the Knee: Current Status and Future Prospects.
Polymers (Basel). 2016 Jun 4;8(6):219. doi: 10.3390/polym8060219.
3
3D Printing of Porous Scaffolds with Controlled Porosity and Pore Size Values.
Materials (Basel). 2018 Aug 25;11(9):1532. doi: 10.3390/ma11091532.
4
Maxillofacial reconstruction with Medpor porous polyethylene implant: a case series study.
J Korean Assoc Oral Maxillofac Surg. 2018 Jun;44(3):128-135. doi: 10.5125/jkaoms.2018.44.3.128. Epub 2018 Jun 26.
6
New alternate bearing surfaces in total hip arthroplasty: A review of the current literature.
J Clin Orthop Trauma. 2018 Jan-Mar;9(1):7-16. doi: 10.1016/j.jcot.2017.10.013. Epub 2017 Oct 27.
8
Incidence and clinical relevance of cage subsidence in anterior cervical discectomy and fusion: a systematic review.
Acta Neurochir (Wien). 2018 Apr;160(4):873-880. doi: 10.1007/s00701-018-3490-3. Epub 2018 Feb 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验