Titz Bjoern, Szostak Justyna, Sewer Alain, Phillips Blaine, Nury Catherine, Schneider Thomas, Dijon Sophie, Lavrynenko Oksana, Elamin Ashraf, Guedj Emmanuel, Tsin Wong Ee, Lebrun Stefan, Vuillaume Grégory, Kondylis Athanasios, Gubian Sylvain, Cano Stephane, Leroy Patrice, Keppler Brian, Ivanov Nikolai V, Vanscheeuwijck Patrick, Martin Florian, Peitsch Manuel C, Hoeng Julia
PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland.
Philip Morris International Research Laboratories Pte. Ltd., Science Park II, Singapore.
Comput Struct Biotechnol J. 2020 Apr 25;18:1056-1073. doi: 10.1016/j.csbj.2020.04.011. eCollection 2020.
Cigarette smoke (CS) causes adverse health effects and, for smoker who do not quit, modified risk tobacco products (MRTPs) can be an alternative to reduce the risk of developing smoking-related diseases. Standard toxicological endpoints can lack sensitivity, with systems toxicology approaches yielding broader insights into toxicological mechanisms. In a 6-month systems toxicology study on ApoE mice, we conducted an integrative multi-omics analysis to assess the effects of aerosols from the Carbon Heated Tobacco Product (CHTP) 1.2 and Tobacco Heating System (THS) 2.2-a potential and a candidate MRTP based on the heat-not-burn (HnB) principle-compared with CS at matched nicotine concentrations. Molecular exposure effects in the lungs were measured by mRNA/microRNA transcriptomics, proteomics, metabolomics, and lipidomics. Integrative data analysis included Multi-Omics Factor Analysis and multi-modality functional network interpretation. Across all five data modalities, CS exposure was associated with an increased inflammatory and oxidative stress response, and lipid/surfactant alterations. Upon HnB aerosol exposure these effects were much more limited or absent, with reversal of CS-induced effects upon cessation and switching to CHTP 1.2. Functional network analysis revealed CS-induced complex immunoregulatory interactions across the investigated molecular layers (e.g., itaconate, quinolinate, and miR-146) and highlighted the engagement of the heme-Hmox-bilirubin oxidative stress axis by CS. This work exemplifies how multi-omics approaches can be leveraged within systems toxicology studies and the generated multi-omics data set can facilitate the development of analysis methods and can yield further insights into the effects of toxicological exposures on the lung of mice.
香烟烟雾(CS)会对健康产生不利影响,对于无法戒烟的吸烟者而言,改良风险烟草产品(MRTPs)可以作为一种降低患吸烟相关疾病风险的替代选择。标准毒理学终点可能缺乏敏感性,而系统毒理学方法能更深入地洞察毒理学机制。在一项针对载脂蛋白E(ApoE)小鼠的为期6个月的系统毒理学研究中,我们进行了综合多组学分析,以评估基于低温加热(HnB)原理的碳加热烟草产品(CHTP)1.2和气溶胶加热系统(THS)2.2(一种潜在的和一种候选的MRTP)产生的气溶胶在与CS尼古丁浓度匹配时的影响。通过mRNA/微小RNA转录组学、蛋白质组学、代谢组学和脂质组学来测量肺部的分子暴露效应。综合数据分析包括多组学因子分析和多模态功能网络解读。在所有五种数据模式中,CS暴露与炎症和氧化应激反应增加以及脂质/表面活性剂改变有关。暴露于HnB气溶胶后,这些影响要有限得多或不存在,在停止使用CS并改用CHTP 1.2后,CS诱导的影响会发生逆转。功能网络分析揭示了CS在研究的分子层面(如衣康酸、喹啉酸和miR-146)诱导的复杂免疫调节相互作用,并突出了CS对血红素-Hmox-胆红素氧化应激轴的影响。这项工作例证了如何在系统毒理学研究中利用多组学方法,并且所生成的多组学数据集有助于分析方法的开发,还能进一步深入了解毒理学暴露对小鼠肺部的影响。