Suppr超能文献

建立一种新型预测模型以提高前列腺活检的阳性率。

Establishing a novel prediction model for improving the positive rate of prostate biopsy.

作者信息

Tao Tao, Shen Deyun, Yuan Lei, Zeng Ailiang, Xia Kaiguo, Li Bin, Ge Qingyu, Xiao Jun

机构信息

Department of Urology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.

Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.

出版信息

Transl Androl Urol. 2020 Apr;9(2):574-582. doi: 10.21037/tau.2019.12.42.

Abstract

BACKGROUND

At present, prostate-specific antigen (PSA) is the primary evaluation index for judging the necessity of prostate cancer (PCa) biopsy. However, there is a high false-positive rate and a low predictive value due to many interference factors. In this study, we tried to find a novel prediction model that could improve the positive rate of prostate biopsy and reduce unnecessary biopsy.

METHODS

We retrospectively studied 237 patients, including their age, body mass index (BMI), PSA, prostate volume (PV), prostate imaging-reporting and data system (PI-RADS) v2 score, neutrophil-lymphocyte ratio (NLR), biopsy Gleason score (BGS), and other information. The univariate and multivariate logistic analyses were used to screen out indicators related to PCa. After establishing a prediction formula model, we used receiver operating characteristic (ROC) curves to assess its prediction performance.

RESULTS

Our study found that age, PSA, PI-RADS v2 score, and diabetes significantly correlated with PCa. Based on multivariate logistic regression analysis results, we created the following prediction formula: Y = 2.599 × PI-RADS v2 score + 1.766 × diabetes + 0.052 × age + 1.005 × PSAD - 9.119. ROC curves showed the formula's threshold was 0.3543. The composite formula had an excellent capacity to detect PCa with the area under the curve (AUC) of 0.91. In addition, the composite formula also achieved significantly better sensitivity, specificity, and diagnostic accuracy than PSA, PSA density (PSAD), and PI-RADS v2 score alone.

CONCLUSIONS

Our predictive formula predicted performance better than PSA, PSAD, and PI-RADS v2 score. It can thus contribute to the diagnosis of PCa and be used as an indicator for prostate biopsy, thereby reducing unnecessary biopsy.

摘要

背景

目前,前列腺特异性抗原(PSA)是判断前列腺癌(PCa)活检必要性的主要评估指标。然而,由于存在诸多干扰因素,其假阳性率较高且预测价值较低。在本研究中,我们试图寻找一种新的预测模型,以提高前列腺活检的阳性率并减少不必要的活检。

方法

我们回顾性研究了237例患者,收集了他们的年龄、体重指数(BMI)、PSA、前列腺体积(PV)、前列腺影像报告和数据系统(PI-RADS)v2评分、中性粒细胞与淋巴细胞比值(NLR)、活检Gleason评分(BGS)以及其他信息。采用单因素和多因素逻辑回归分析筛选出与PCa相关的指标。建立预测公式模型后,我们使用受试者工作特征(ROC)曲线评估其预测性能。

结果

我们的研究发现年龄、PSA、PI-RADS v2评分和糖尿病与PCa显著相关。基于多因素逻辑回归分析结果,我们创建了以下预测公式:Y = 2.599×PI-RADS v2评分 + 1.766×糖尿病 + 0.052×年龄 + 1.005×PSA密度(PSAD) - 9.119。ROC曲线显示该公式的阈值为0.3543。该复合公式检测PCa的能力优异,曲线下面积(AUC)为0.91。此外,该复合公式在敏感性、特异性和诊断准确性方面也显著优于单独的PSA、PSA密度(PSAD)和PI-RADS v2评分。

结论

我们的预测公式预测性能优于PSA、PSAD和PI-RADS v2评分。因此,它有助于PCa的诊断,并可作为前列腺活检的指标,从而减少不必要的活检。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/47fb/7215001/04d856d24af2/tau-09-02-574-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验