Reznikov Natalie, Alsheghri Ammar A, Piché Nicolas, Gendron Mathieu, Desrosiers Catherine, Morozova Ievgeniia, Sanchez Siles Juan Manuel, Gonzalez-Quevedo David, Tamimi Iskandar, Song Jun, Tamimi Faleh
Faculty of Dentistry, McGill University, 2001 Avenue McGill College, Montréal, QC H3A 1G1, Canada.
Object Research Systems Inc., 760 Saint-Paul St W, Montréal, QC H3C 1M4, Canada.
Bone Rep. 2020 Apr 28;12:100264. doi: 10.1016/j.bonr.2020.100264. eCollection 2020 Jun.
Bone is a hierarchically organized biological material, and its strength is usually attributed to overt factors such as mass, density, and composition. Here we investigate a covert factor - the topological blueprint, or the network organization pattern of trabecular bone. This generally conserved metric of an edge-and-node simplified presentation of trabecular bone relates to the average coordination/valence of nodes and the equiangular 3D offset of trabeculae emanating from these nodes. We compare the topological blueprint of trabecular bone in presumably normal, fractured osteoporotic, and osteoarthritic samples (all from human femoral head, cross-sectional study). We show that bone topology is altered similarly in both fragility fracture and in joint degeneration. Decoupled from the morphological descriptors, the topological blueprint subjected to simulated loading associates with an abnormal distribution of strain, local stress concentrations and lower resistance to the standardized load in pathological samples, in comparison with normal samples. These topological effects show no correlation with classic morphological descriptors of trabecular bone. The negative effect of the altered topological blueprint may, or may not, be partly compensated for by the morphological parameters. Thus, naturally occurring optimization of trabecular topology, or a lack thereof in skeletal disease, might be an additional, previously unaccounted for, contributor to the biomechanical performance of bone, and might be considered as a factor in the life-long pathophysiological trajectory of common bone ailments.
骨骼是一种具有层次结构的生物材料,其强度通常归因于诸如质量、密度和组成等明显因素。在此,我们研究一个隐蔽因素——拓扑蓝图,即小梁骨的网络组织模式。这种对小梁骨边缘和节点简化呈现的一般守恒度量,与节点的平均配位数/化合价以及从这些节点发出的小梁的等角三维偏移有关。我们比较了正常、骨折骨质疏松和骨关节炎样本(均来自人类股骨头,横断面研究)中小梁骨的拓扑蓝图。我们发现,在脆性骨折和关节退变中,骨拓扑结构的改变相似。与形态学描述符解耦后,与正常样本相比,模拟加载下的拓扑蓝图与病理样本中应变的异常分布、局部应力集中以及对标准化载荷的较低抵抗力相关。这些拓扑效应与小梁骨的经典形态学描述符无关。拓扑蓝图改变的负面影响可能会,也可能不会,部分地由形态学参数补偿。因此,小梁拓扑结构的自然优化,或骨骼疾病中缺乏这种优化,可能是骨骼生物力学性能的一个额外的、以前未被考虑的因素,并且可能被视为常见骨骼疾病终身病理生理轨迹中的一个因素。